scholarly journals Methionine Deficiency Affects Liver and Kidney Health, Oxidative Stress, and Ileum Mucosal Immunity in Broilers

2021 ◽  
Vol 8 ◽  
Author(s):  
Baolin Song ◽  
Min Fu ◽  
Fang He ◽  
Huan Zhao ◽  
Yu Wang ◽  
...  

Methionine (Met) is the first limiting amino acid in broiler diets, but its unclear physiological effects hamper its effective use in the poultry production industry. This study assessed the effect of a Met-deficient (MD) diet on chicken liver and kidney health, exploring the associated mechanisms of antioxidant capacity and ileum mucosal immunity. Seventy-two broilers were administered either the control diet (0.46% Met in starter diet, 0.36% Met in grower diet) or the MD diet (0.22% Met in starter diet, 0.24% Met in grower diet). Liver and kidney samples were collected every 14 days for anatomical, histological, and ultrastructural analyses, accompanied by oxidative stress assessment. Meanwhile, T- and B-lymphocyte abundance and essential cytokine gene expression were measured in the ileum, the center of the gut–liver–kidney axis. Signs of kidney and liver injury were observed morphologically in the MD group at 42 days of age. Furthermore, aspartate aminotransferase, alanine aminotransferase, creatinine, and uric acid levels were decreased in the MD group compared with the control group, accompanied by decreased superoxide dismutase activity, increased malondialdehyde content, decreased numbers of T and B lymphocytes, and decreased cytokine expression in the ileum, such as IL-2, IL-6, LITAF, and IFN-γ. These results suggest that MD can induce kidney and liver injury, and the injury pathway might be related to oxidative stress and intestinal immunosuppression.

2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Suchittra Samuhasaneeto ◽  
Duangporn Thong-Ngam ◽  
Onanong Kulaputana ◽  
Doungsamon Suyasunanont ◽  
Naruemon Klaikeaw

To study the mechanism of curcumin-attenuated inflammation and liver pathology in early stage of alcoholic liver disease, female Sprague-Dawley rats were divided into four groups and treated with ethanol or curcumin via an intragastric tube for 4 weeks. A control group treated with distilled water, and an ethanol group was treated with ethanol (7.5 g/kg bw). Treatment groups were fed with ethanol supplemented with curcumin (400 or 1 200 mg/kg bw). The liver histopathology in ethanol group revealed mild-to-moderate steatosis and mild necroinflammation. Hepatic MDA, hepatocyte apoptosis, and NF-κB activation increased significantly in ethanol-treated group when compared with control. Curcumin treatments resulted in improving of liver pathology, decreasing the elevation of hepatic MDA, and inhibition of NF-κB activation. The 400 mg/kg bw of curcumin treatment revealed only a trend of decreased hepatocyte apoptosis. However, the results of SOD activity, PPARγprotein expression showed no difference among the groups. In conclusion, curcumin improved liver histopathology in early stage of ethanol-induced liver injury by reduction of oxidative stress and inhibition of NF-κB activation.


2018 ◽  
Vol 66 (1) ◽  
pp. 52-65 ◽  
Author(s):  
Tao Ruan ◽  
Lingjun Li ◽  
Yingnan Lyu ◽  
Qin Luo ◽  
Bangyuan Wu

The aim of this study was to investigate the effects of methionine (Met) deficiency on antioxidant functions (in the duodenal, jejunal and ileal mucosa) and apoptosis in the duodenum, jejunum and ileum of broiler chickens. A total of 120 one-day-old Cobb broilers were divided into two groups and fed a Metdeficient diet and a control diet, respectively, for six weeks. The activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), the ability to inhibit hydroxyl radicals, and glutathione (GSH) content were significantly decreased in the Met-deficient group compared to the control. In contrast, malondialdehyde (MDA) content was significantly higher in the Met-deficient group. As measured by terminal deoxynucleotidyl transferase 2’-deoxyuridine 5’- triphosphate dUTP nick end-labelling (TUNEL) and flow cytometry (FCM), the percentages of apoptotic cells were significantly increased. In conclusion, dietary Met deficiency can cause oxidative stress and then induce increased apoptosis in the intestine. Oxidative stress contributes to intestinal apoptosis. This results in the impairment of local intestinal mucosal immunity due to oxidative stress and apoptosis in the small intestine. The results of this study provide new experimental evidence for understanding the negative effects of Met deficiency on mucosal immunity or the functions of other immune tissues.


Medicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Ayokanmi Ore ◽  
Abideen Idowu Adeogun ◽  
Oluseyi Adeboye Akinloye

Background: Tamoxifen (TMX) has proven to be effective in the prevention and treatment of breast cancer. However, long-term use of TMX is associated with hepatic steatosis, oxidative liver injury and hepatocarcinoma. Buchholzia coriacea seeds (BCS) have been widely applied in traditional medicine due to their nutritional and therapeutic potentials. This study investigates the protective effect of hydroethanolic extract of (defatted) B. coriacea seeds (HEBCS) against TMX–induced hepatotoxicity in rats. Methods: Thirty-six (36) male albino rats were divided into six groups (n = 6/group). Group I served as control. Group II received 50 mg/kg/day TMX orally (p.o.) (TMX) for 21 days, group III received TMX plus 125 mg/kg/d HEBCS p.o. (HEBCS 125) for 21 days, group IV received TMX plus 250 mg/kg/d HEBCS p.o. (HEBCS 250) for 21 days and rats in group V and VI received HEBCS 125 and HEBCS 250 respectively for 21 days. Results: Compared with the control, TMX caused a significant increase (p < 0.05) in serum hepatic function biomarkers: alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase by 57%, 60% and 68% respectively. TMX also caused a significant increase in hepatic triglycerides level by 166% when compared with control and a significant decrease in serum HDL-cholesterol level by 37%. Compared with control, hepatic marker of inflammation, tumour necrosis factor alpha (TNF-α) increased significantly by 220%, coupled with significant increase in expression of interleukin 6 and cyclooxygenase 2. There was also significant increase in levels of Biomarkers of oxidative stress, nitric oxide, malondialdehyde and protein carbonyls in the TMX group by 89%, 175% and 114% respectively when compared with the control. Hepatic antioxidants, reduced glutathione (GSH) level and activities of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST) and glutathione peroxidase (GSH-Px) decreased significantly in the TMX group by 35%, 67%, 41%, 59% and 53% respectively when compared with the control. However, HEBCS at 250 mg/kg significantly protected against TMX–induced hepatotoxicity by decreasing hepatic triglyceride content, serum hepatic function biomarkers, hepatic inflammation and oxidative stress with significant improvement in hepatic antioxidant system. Histopathological findings show that HEBCS alleviate TMX–induced hepatocyte ballooning. Conclusions: Current data suggest that HEBCS protected against TMX–induced hepatotoxicity in rats. HEBCS may be useful in managing TMX–induced toxicities in breast cancer patients. It may also be helpful against other forms of liver injury involving steatosis, inflammation, free radicals, and oxidative damage.


Author(s):  
Reza Eshrati ◽  
Mahvash Jafari ◽  
Saeed Gudarzi ◽  
Afshen Nazari ◽  
Esmaeil Samizadeh ◽  
...  

Abstract Taraxacum syriacum (TS) with natural antioxidant and pharmacological activities may be considered for treatment of oxidative stress induced by acetaminophen (APAP). The aim of this study was to evaluate the ameliorative effects of the ethanol extract of TS root against hepatorenal toxicity induced by APAP in comparison to N-acetylcysteine (NAC) as a standard drug. Thirty male Wistar rats were randomly divided into five groups. Control group; APAP (1 g/kg) group; APAP–NAC (160 mg/kg) group and APAP-TS100 and APAP-TS200 groups: APAP plus 100 and 200 mg/kg of TS extract, respectively. After 7 days treatment, serum and liver and kidney tissues were prepared and evaluated. TS extract ameliorated the increased lipid peroxidation level and decreased antioxidant enzymes activities and glutathione level in liver and kidney of APAP-treated rats. Moreover, treatment with the TS extract caused significant reduction in the histopathological damages and high levels of serum biochemical markers of hepatic and renal functions after APAP treatment. This study suggests that the extract of TS roots has dose-dependent ameliorative effect against APAP-induced oxidative damage in liver and kidney due to its free radical scavenging and antioxidant properties. The overall efficacy of the extract at 200 mg/kg dose is comparable with NAC.


2014 ◽  
Vol 83 (4) ◽  
pp. 299-304 ◽  
Author(s):  
Jitka Osičková ◽  
Hana Banďouchová ◽  
Veronika Kováčová ◽  
Jiří Král ◽  
Ladislav Novotný ◽  
...  

Responses of wildlife to multiple stressors fit in the ecological concept of trade-off. While toxicity of non-steroidal anti-inflammatory drugs and heavy metals for free-ranging birds has been shown in single exposures, the present study aims to evaluate oxidative stress, and liver and kidney damage caused by single and combined effects of diclofenac and lead in the Japanese quail. Forty Japanese quail (Coturnix coturnix japonica) were divided into equal groups of controls, diclofenac, Pb, and Pb+diclofenac exposures. The birds were exposed to the respective chemicals through insertion of lead shots (1.5 g) into the crop on day 0 of the experiment and/or administration of 5 mg/kg of diclofenac intramuscularly in two treatments on days 0 and 5. Groups in liver and kidney tissues of birds were then compared after 10 days using histopathology and biochemistry markers such as glutathione reductase (GR), ferric reducing antioxidant power (FRAP), and lipid peroxidation measured as total thiobarbituric acid reactive species (TBARS). The liver damage score gradient was Pb+diclofenac exposure group > Pb exposure group > diclofenac exposure group and hepatic TBARS values were significantly increased in the group of birds exposed to a combination of diclofenac and lead compared to the healthy control group. The study has shown that, apart from the reported nephrotoxicity of diclofenac, hepatic toxicity should also be considered. Avian clinicians should be cautious when selecting drugs for therapy of wild birds with unknown history of exposure to toxic substances.


2008 ◽  
Vol 78 (45) ◽  
pp. 175-182 ◽  
Author(s):  
Masako Nakano ◽  
Natsumi Orimo ◽  
Nakako Katagiri ◽  
Masahito Tsubata ◽  
Jiro Takahashi ◽  
...  

In this study, the effect of dietary antioxidants, such as astaxanthin and Flavangenol®, and a combination of both, in counteracting oxidative stress in streptozotocin-induced diabetes was investigated. Streptozotocin-induced diabetic rats were divided into four groups: control, astaxanthin, Flavangenol, and combined astaxanthin and Flavangenol (mix group). Each group other than the control group was fed with an astaxanthin diet (0.1 g/kg), Flavangenol diet (2.0 g/kg), or an astaxanthin (0.1 g/kg)-Flavangenol (2.0 g/kg) mixture diet, respectively. After 12 weeks of feeding, the results showed that the lipid peroxide levels of plasma and lens and the plasma triglyceride (TG) level in the mix group were significantly decreased by 44%, 20%, and 20%, respectively, compared with the control group. In the mix group, lipid peroxidation was also significantly reduced by 70% in the liver and 20% in the kidney compared with the control group. Furthermore, the level of urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) in the mix group was significantly lower, 36%, than the control group. The α-tocopherol concentrations in the plasma, liver, and kidney in the astaxanthin and mix groups were significantly higher, 3-9 times, than in the control group. The degree of cataract formation in the Flavangenol and mix groups tended to be lower than the control group. These results indicate that the combination of astaxanthin with Flvangenol has an improved protective effect on oxidative stress associated with streptozotocin-induced diabetes than either agent used alone. Thus, this combination may be beneficial in preventing the progression of diabetic complications.


2021 ◽  
Vol 20 (11) ◽  
pp. 2305-2310
Author(s):  
Jinan Zheng ◽  
Qing Huang ◽  
Jingjing Fang

Purpose: To determine the protective effect of puerarin against acute liver injury in septic rats, and the mechanism involved.Methods: Eighty-seven Sprague-Dawley (SD) rats were assigned to control, sepsis and puerarin groups (each having 29 rats). Serum levels of NF-kB, TNF-α, IL-1 β, IL-6, ALT and AST were assayed. Liver lesions and levels of NO, SOD, iNOS and malondialdehyde (MDA) were measured using standard procedures.Results: Compared with the control group, the levels of NF-kB, TNF-α, IL-1β, IL-6, AST, ALT, NO, MDA and iNOS significantly increased in the sepsis group, while SOD level decreased significantly. In contrast, there were marked decreases in NF-kB, TNF-α, IL-1β, AST, ALT, NO, MDA and iNOS in puerarin group, relative to the sepsis group, while SOD expression level was significantly increased (p <0.05). The level of p-p38 in liver of septic rats was up-regulated, relative to control rats, while Nrf2 significantly decreased (p < 0.05). The expression level of p-p38 in the puerarin group was significantly decreased, relative to the sepsis group, while the expression level of Nrf2 significantly increased (p < 0.05).Conclusion: Puerarin mitigates acute liver injury in septic rats by inhibiting NF-kB and p38 signaling pathway, down-regulating proinflammatory factors, and suppressing oxidative stress. Thus, puerarin may be developed for use in the treatment liver injury.


2020 ◽  
Vol 8 (1) ◽  
pp. 96
Author(s):  
Ashraf A. A. Elkomy ◽  
Mossad G. E Elsayed ◽  
Faten I. El sayed ◽  
Ahmed A. Abd el atey

Due to great hazard effects of antibiotic the following study aimed to investigate the adverse effect of cefotaxime in biochemical, oxidative status and histological examination of Liver and kidney tissue as well as the protective effect of olive oil. Twenty four male Wister albino rats were randomly divided into main four groups including: - G (1): Served as control group and it includes six rats, they were administrated 0.5ml of saline orally for 14 consecutive days. G (2): it includes six rats, they were administered 5ml/kg olive oil orally for 14 consecutive days. G (3): it includes six rats, they were administrated 90mg/kg body weight/twice daily of cefotaxime intramuscular for 14 consecutive days. G (4): it includes six rats, they were administered 5ml/kg olive oil orally concurrently with 90mg/kg body weight/twice daily of cefotaxime. Results revealed that cefotaxime induced significant increases in liver and kidney function parameters including AST, ALT, ALP. creatinine, and urea as well as decrease in albumin and total protein level. Moreover, marked an increase in malondialdehyde (MDA) and decreases in glutathione (GSH) and catalase (CAT) levels. that indicate oxidative stress levels expression in the hepatic and renal tissues following cefotaxime administration. On the beneficial side oral administration of olive oil at the dose 5ml/kg for 14 days significantly mitigate theses toxic effects. So it is concluded that olive oil has great hepatorenal antioxidant effect. 


Author(s):  
Tijani Stephanie Abiola ◽  
Olori Ogaraya David ◽  
Farombi Ebenezer Olatunde

Aim: Manganese (Mn) is an essential trace element in many cellular processes. However, there is dearth of literature on its influence on indomethacin-induced hepatorenal damage. Therefore, this study was conducted to investigate the effect of manganese on indomethacin-induced hepatorenal damage in rats. Methods: Rats were divided into four groups of eight rats consisting of control group, indomethacin (IND) alone (20 mg/kg), Mn alone (10 mg/kg) and co-treated group that were treated orally for 14 consecutive days. Twenty four hours after treatment, under pentobarbital anesthesia, blood was collected and liver was excised to prepare homogenate and histology staining. Liver and kidney function tests aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma glutamyl transferase (GGT), lactate dehydrogenase (LDH), malate dehydrogenase (MDH), glutamine dehydrogenase (GLDH), sorbitol dehydrogenase (SDH), glucose-6-phosphate dehydrogenase (G6PD), bilirubin (BIL), urea, creatinine, cholesterol (CHOL), triglycerides (TG), low and high density lipoprotein (LDL and HDL), electrolytes and oxidative stress superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and lipid peroxidation (LPO) biomarkers were assessed. Results: The results showed that indomethacin caused hepatorenal damage in rats manifested with increase in serum hepatic and renal function biomarkers. But co-administration of IND with Mn significantly (p < 0.05) decreased the level of hepatorenal biomarkers. Additionally, co-administration of IND with Mn improved the antioxidant status with concomitant reduction of LPO and restored the integrity of the liver and kidney histologically. Conclusion: The results of this study emphasize that co-administration of IND with Mn to rats alleviated IND-induced hepatorenal toxicities and oxidative stress in rats.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Liming Wang ◽  
Zhida Wang ◽  
Yanchao Xing ◽  
Erwei Liu ◽  
Xiumei Gao ◽  
...  

Background. Polygonum Multiflorum Radix Preparata (PMP), prepared from Polygonum multiflorum Thunb. (PM), is traditionally valued for its liver and kidney-tonifying effects. However, the previous studies showed that PMP was hepatotoxic, which limited its clinical use. Unfortunately, the potential hepatotoxic ingredients and the molecular mechanism are still uncertain. Objective. The aim of this study was to find out potential biomarkers of hepatotoxicity using metabolomics profile. Materials and Methods. 60% ethanol extract of PMP (PMPE) was prepared. Subsequently, an untargeted metabolomics technology in combination with ROC curve analysis method was applied to investigate the alteration of plasma metabolites in rats after oral administration of PMPE (40 g/kg/d) for 28 days. Results. Compared to the control group, the significant difference in metabolic profiling was observed in the PMPE-induced liver injury group, and sixteen highly specific biomarkers were identified. These metabolites were mainly enriched into bile acids, lipids, and energy metabolisms, indicating that PMPE-induced liver injury could be related to cholestasis and dysregulated lipid metabolism. Conclusions. This study is contributed to understand the potential pathogenesis of PMP-induced liver injury. The metabonomic method may be a valuable tool for the clinical diagnosis of PMP-induced liver injury.


Sign in / Sign up

Export Citation Format

Share Document