scholarly journals Combined Addition of Bovine Bone and Cow Manure: Rapid Composting of Chestnut Burrs and Production of a High-quality Chestnut Seedling Substrate

Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 288 ◽  
Author(s):  
Wangzun Chen ◽  
Libing He ◽  
Shiyi Tian ◽  
Joseph Masabni ◽  
Riqing Zhang ◽  
...  

In China, chestnut burrs (CB) are produced at a rate of a million tons per year as the major byproduct of chestnut orchards. It is necessary to utilize the chestnut forest green waste and convert it into a valuable seedling media for the sustainable cultivation of chestnut seedlings. In this study, we composted CB with two waste products of cattle farming, namely cow manure (CM) and bovine bone (BM). We also evaluated the potential of CB compost application in chestnut forest sustainability. Results indicated that the best combination was the addition of 15% BM and 55% CM. This combination significantly improved the composting environment by increasing pH, enhancing phosphorus concentration and mineral elements such as Ca, Na, Mg and Zn, and shortened the composting period to 38 days. This combination also resulted in the highest content of citric acid-P (109.20 times than the control treatment) and the lowest content of NH4+–N (0.28 times than control treatment) indicating a better N and P structure of the final compost product. This combination achieved a greater degradation rate of CB cellulose (61.45%), hemicellulose (37.87%), and a more significant degradation of outer epidermis structure. When CB compost was used as a growing media, a significant decrease in photosynthesis stress of chestnut seedlings was observed, which was mainly manifested as a decrease in photochemical quenching (qP) and an increase of the maximum efficiency of PSII photochemistry under dark-adaption (Fv/Fm). Addition of 10% CB compost (in volume basis) is suggested, which resulted in the tallest chestnut seedlings (59.83 cm) with a stem diameter of 0.91 cm after six months of growth. In summary, this research provides an environmentally friendly strategy for chestnut orchard sustainability: rapid composting of CB, then immediate application as a high-quality substrate for chestnut seedlings.

Author(s):  
V. Jaldhani ◽  
D. Sanjeeva Rao ◽  
P. Beulah ◽  
B. Srikanth ◽  
P. R. Rao ◽  
...  

Aims: To assess heat-induced PSII damage and efficiency in eight promising backcross introgression lines (BC2F6) of KMR-3R/N22 possessing qHTSF1.1 and qHTSF4.1. Study Design:  Randomized Complete Block Design (RCBD) with three replications. Place and Duration of Study: ICAR-Indian Institute of Rice Research, Hyderabad India during wet/rainy (Kharif) season 2018. Methodology: Eight ILs (BC2F6) and parents were evaluated for heat tolerance. The high- temperature stress was imposed by enclosing the crop with a poly cover tent (Polyhouse) just before the anthesis stage. The fluorescence parameters viz., maximum efficiency of PSII photochemistry (Fv/Fm), Electron transport rate (ETR), effective PSII quantum yield (ΦPSII), coefficient of photochemical quenching (qP) and coefficient of non-photochemical quenching (qN) were measured under ambient and high-temperature stress. Results: The heat-tolerance potential of ILs was assessed in terms of PSII activity. The results indicated that significant differences were observed between treatments (T), genotypes (G) and the interaction between T × G.  The physiological basis of introgressed QTLs controls the spikelet fertility by maintaining the productive and adaptive strategies in heat-tolerant QTL introgressed lines with stable photosynthetic apparatus (PSII) under high-temperature stress. Conclusion: The Fv/Fm ratio denotes the maximum quantum yield of PSII. The heat-tolerant QTL introgressed lines exhibited stable photosynthetic apparatus (PSII) and noted better performance under high-temperature stress. They may be used as donors for fluorescence traits in breeding rice for high-temperature tolerance.


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 526 ◽  
Author(s):  
Alefsi David Sánchez-Reinoso ◽  
Gustavo Adolfo Ligarreto-Moreno ◽  
Hermann Restrepo-Díaz

The common bean is susceptible to drought conditions and the evaluation of plant responses to low water availability can be difficult. The quantification of chlorophyll fluorescence as a sensitive trait to environmental stresses is an important alternative in the characterization of drought-susceptible genotypes. The objective of this study was to evaluate mainly the use of chlorophyll α fluorescence (maximum efficiency of PSII (Fv/Fm), photochemical quenching (qP), non-photochemical quenching (NPQ)) and rapid light-response curves (RLCs) (initial slope of the curve (α), minimum saturation irradiance (Ik) and maximum relative electron transport rate (ETRmax)) parameters as tools for the identification of susceptible or tolerant bush bean cultivars to water deficit stress conditions in two different phenological stages. Using a randomized block design in a factorial arrangement, five bush bean cultivars (Cerinza, Bachue, NUA35, Bacata and Bianca) were evaluated under water deficit conditions by the suspension of irrigation for 15 days from 40 to 55 Days after Emergence (DAE) (vegetative stage) or 50 to 65 DAE (reproductive stage). The results showed that Fv/Fm and NPQ recorded the highest variation due to water deficit conditions, especially in the vegetative stage. The greatest reductions in Fv/Fm (0.67) and NPQ (0.71) were evidenced in cultivar NUA35 compared to its control plants (0.78 and 1.07, respectively). The parameters obtained from RLCs showed that cultivar Bacata registered the lowest α (0.17) and Ik (838.19 μmol∙m−2∙s−1) values compared to its control plants (α 0.23; Ik 769.99 μmol∙m−2∙s−1). Differences were only obtained in ETRmax in the reproductive stage (50–65 DAE) in which cultivar NUA35 reached values of 158.5 in stressed plants compared to control plants (251.22). In conclusion, the parameters derived from RLCs such as α and Ik can be used as tools to identify drought susceptibility in the vegetative stage, whereas ETRmax can be used in the reproductive stage. In addition, PSII photochemistry (Fv/Fm and NPQ) can also help to understand the agronomic responses of common bush bean cultivars to drought conditions.


2019 ◽  
Vol 5 (2) ◽  
pp. 117-123 ◽  
Author(s):  
D. Dobermann ◽  
L. Michaelson ◽  
L.M. Field

Previous studies have led to claims that insects can offer a solution to several food security hurdles, one of which is the processing of food waste. However, although it has been demonstrated that some insects survive well on bio-waste (e.g. Hermetia illucens), no study, has to date, demonstrated success rearing species more commonly used for human consumption, such as crickets, on biowaste from hatching. This trial aimed to establish if the black cricket, Gryllus bimaculatus, can be reared successfully on bio-waste from hatching. Since, in other livestock sectors it has been established that nutritional requirements vary with age and that diet must be altered accordingly to achieve the best growth, e.g. chick feed to layer mash in chickens, the present trial used a similar feeding regime of an initially high-quality feed to see if this allowed the subsequent survival of crickets on low quality bio-waste products. Pilot trials have demonstrated poor to no survival on beer waste and cow manure and mid-level survival on unprocessed vegetable waste with chicken feed as the control. Based on this, feed regimes of either 1 or 2 weeks high quality feed (chicken feed) and then either 2 or 3 weeks of low quality feed (beer waste or vegetable waste) were tested. Results showed that even 1 week of high quality feed makes a significant difference in survival and end size of crickets subsequently reared on low-quality bio-waste.


2019 ◽  
Vol 46 (7) ◽  
pp. 634 ◽  
Author(s):  
Dennis H. Greer

Shiraz vines grown outdoors with and without a crop load were used to determine photosynthetic and chlorophyll fluorescence responses to light across a range of leaf temperatures to evaluate the impact of presence/absence of a sink on these responses. Results indicate maximum rates of photosynthesis and light saturation in fruiting vines were biased towards higher temperatures whereas these processes in vegetative vines were biased towards lower temperatures. The maximum efficiency of PSII photochemistry was similarly biased, with higher efficiency for the vegetative vines below 30°C and a higher efficiency for the fruiting vines above. The quantum efficiency of PSII electron transport was generally higher across all temperatures in the fruiting compared with vegetative vines. Photochemical quenching was not sensitive to temperature in fruiting vines but strongly so in vegetative vines, with an optimum at 30°C and marked increases in photochemical quenching at other temperatures. Non-photochemical quenching was not strongly temperature dependent, but there were marked increases in both treatments at 45°C, consistent with marked decreases in assimilation. These results suggest demand for assimilates in fruiting vines induced an acclimation response to high summer temperatures to enhance assimilate supply and this was underpinned by comparable shifts in PSII photochemistry.


2021 ◽  
Author(s):  
Lu Yang ◽  
Sijia Bu ◽  
Shengxue Zhao ◽  
Ning Wang ◽  
Jiaxin Xiao ◽  
...  

Abstract Drought stress seriously affects tomato growth, yield and quality. Previous reports have pointed out that melatonin (MT) can alleviate drought stress damage to tomato. To better understand the possible physiological and molecular mechanisms, chlorophyll fluorescence parameters and leaf transcriptome profiles were analyzed in the “Micro Tom” tomato cultivar with or without melatonin irrigation under normal and drought conditions. Polyethylene glycol 6000 (PEG6000) simulated continuous drought treatment reduced plant height, but melatonin treatment improved plant growth rate. Physiological parameter measurements revealed that the drought-induced decreases in maximum efficiency of photosystem II (PSII) photochemistry, the effective quantum yield of PSII, electron transfer rate, and photochemical quenching value caused by PEG6000 treatment were alleviated by melatonin treatment, which suggests a protective effect of melatonin on PSII. Comparative transcriptome analysis identified 447, 3982, 4526 and 3258 differentially expressed genes (DEGs) in the comparative groups plus-melatonin vs. minus-melatonin (no drought), drought vs. no drought (minus-melatonin), drought vs. no drought (melatonin) and plus-melatonin vs. minus-melatonin (drought), respectively. Furthermore, 101 DEGs were common to these four comparative groups. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis revealed that DEGs in the four comparative groups were involved in multiple metabolic processes and closely related to hormone signal transduction and transcription factors. These results provide new insights into a probable mechanism of the melatonin-induced protection of photosynthesis and enhancement of drought tolerance in tomato plants.


2012 ◽  
Vol 39 (1) ◽  
pp. 71 ◽  
Author(s):  
Huawei Li ◽  
Jian Cai ◽  
Fulai Liu ◽  
Dong Jiang ◽  
Tingbo Dai ◽  
...  

Wheat (Triticum aestivum L.) plants were subjected to combined waterlogging and shading (WS) at 0–7, 8–15, 16–23 and 24–31 days after anthesis (DAA). WS at 0–7, 8–15, 16–23 and 24–31 DAA caused a yield loss of 17.18%, 14.98%, 7.93% and 7.05%, respectively. These losses were related to reductions in post-anthesis photoassimilate accumulation and 1000-kernel weight. WS reduced net photosynthetic rate (Pn), the maximum efficiency of PSII photochemistry under dark adaptation, actual photosynthetic efficiency and the photochemical quenching coefficient, but increased the quantum yield of quenching. WS caused enhanced concentrations of malondialdehyde and H2O2, and an increased superoxide anion release. Superoxide dismutase and catalase activity were stimulated at 4 days after the onset of WS at 0–7 and 8–15 DAA, but decreased at 8 days after the onset of WS at 0–7, 8–15 and 16–23 DAA. Ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase and monodehydroascorbate reductase activity increased during 0–8 days after the onset of WS at 0–7, 8–15 and 16–23 DAA. At 16–24 DAA, Pn, the level of reactive oxygen species and activity of the antioxidative enzymes fully recovered in plants subjected to WS at 0–7 DAA, but only partially recovered under WS at 8–15 DAA. Expression of the photosythesis-responsive genes RcaB and Cab, and the antioxidative enzyme-related genes Mn-SOD, Cu/Zn-SOD, CAT and GR were consistent with the performance of Pn and the activity of the antioxidative enzymes.


2007 ◽  
Vol 62 (5-6) ◽  
pp. 403-409 ◽  
Author(s):  
Shu Yuan ◽  
Wen-Juan Liu ◽  
Tao Lei ◽  
Ming-Hua Luo ◽  
Jun-Bo Du ◽  
...  

“NYB” is a chlorophyll-less barley mutant, which grows relatively slow and unhealthily. The effects of water stress on photosystem II (PSII) of NYB and its wild type (WT) were investigated. Unexpected results indicated that the mutant was more resistant to water stress, because: PSII core proteins D1, D2 and LHCII declined more in WT than in NYB under water stress, and the corresponding psbA, psbD and cab mRNAs also decreased more dramatically in WT; CO2 assimilation, stomatal conductance, maximum efficiency of PSII photochemistry (Fv/Fm), efficiency of excitation energy capture by open PSII reaction centres (Fv’/Fm’), quantum yield of PSII electron transport (φPSII) and DCIP photoreduction in NYB were less sensitive to water stress than in WT, although the non-photochemical quenching coefficient (qN) and the photochemical quenching coefficient (qP) were almost the same in NYB and WT. Effective chlorophyll utilization and improved PSII protein formation in the mutant may be the reason for the enhanced stress resistance. Other possible mechanisms are also discussed.


1998 ◽  
Vol 25 (3) ◽  
pp. 317 ◽  
Author(s):  
Congming Lu ◽  
Jianhua Zhang

Modulated chlorophyll fluorescence and rapid fluorescence induction kinetics were used to evaluate the functions of photosystem II (PSII) photochemsitry in sorghum leaves exposed to salinity (0–100 mM NaCl) and/or high temperature stress (30–50°C). No differences were detected in the steady- state fluorescence parameters and rapid fluorescence induction kinetics in salt-stressed leaves, indicating that PSII was highly resistant to salinity stress alone. However, salinity stress modified the responses of PSII to high temperature. When the temperature was above 45°C, the thermostability of PSII was strongly enhanced in salt-stressed leaves, which was reflected in a smaller decrease in maximum efficiency of PSII photochemistry, coefficients of photochemical and non-photochemical quenching, and efficiency of excitation capture by open PSII reaction centres, and in a smaller increase in the proportion of the QB-non-reducing PSII centres in salt-stressed leaves than in control leaves. This increased thermostability in salt-stressed leaves exposed to high temperature seemed to be independent of the imposed salt concentration since there were no significant variations in the above fluorescence parameters among the salt-stressed plants treated with different salt concentrations. The results are discussed in terms of the physiological significance of such increased resistance of PSII to high temperature.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 238
Author(s):  
Qianqian Song ◽  
Yi Zhang ◽  
Hao Bai ◽  
Li Zhong ◽  
Xiaofan Li ◽  
...  

This study was conducted to investigate the deposition of several mineral elements and the mRNA levels of mineral-related genes across different tissues of cherry valley ducks. The contents of magnesium (Mg), potassium (K), zinc (Zn), and selenium (Se) in ducks’ breast muscle, thigh muscle, liver, skin, and tibia at the age of 0, 21, 35, 49, and 63 days, respectively, were measured using an atomic fluorescence spectrophotometer, while the mRNA levels of mineral-related genes were detected by qRT-PCR. The results revealed that the dynamics of Mg and K were generally similar in each tissue, with a significant positive correlation (p < 0.05). In the breast muscle, thigh muscle, and liver, the contents of almost all mineral elements reached their peak values (p < 0.05) at the age of 49 to 63 days. Interestingly, the expression of most mineral-related genes was the highest at birth (p < 0.05). In addition, there was a significant negative correlation between the expression of ATP1A1 and the deposition of K (r = −0.957, p < 0.05), and a similar result was found for the expression of ATP8 and the deposition of Zn (r = −0.905, p < 0.05). Taken together, Mg and K could be used as joint indicators for the precise breeding of the high-quality strain of cherry valley ducks, while the age of 49 to 63 days could be used as the reference for the best marketing age. In addition, ATP1A1 and ATP8 could be used as the key genes to detect K and Zn, respectively. Hence, the findings of this study can be used to improve the production and breeding efficiency of high-quality meat ducks.


2021 ◽  
Author(s):  
Takehiro Kazama ◽  
Kazuhide Hayakawa ◽  
Takamaru Nagata ◽  
Koichi Shimotori ◽  
Akio Imai ◽  
...  

Field observations of the population dynamics and measurements of photophysiology in Lake Biwa were conducted by size class (< vs. > 30 μm) from early summer to autumn to investigate the relationships between susceptibility to light stress and cell size. Also, a nutrient bioassay was conducted to clarify whether the growth rate and photosystem II (PSII) photochemistry of small and large phytoplankton are limited by nutrient availability. Large phytoplankton, which have lower intracellular Chl-a concentrations, had higher maximum PSII photochemical efficiency (Fv/Fm) but lower non-photochemical quenching (NPQNSV) than small phytoplankton under both dark and increased light conditions. The nutrient bioassay revealed that the PSII photochemistry of small phytoplankton was restricted by N and P deficiency at the pelagic site even at the end of the stratification period, while that of large phytoplankton was not. These results suggest that large phytoplankton have lower susceptibility to PSII photodamage than small phytoplankton due to lower intracellular Chl-a concentrations. The size dependency of susceptibility to PSII photoinactivation may play a key role in large algal blooms in oligotrophic water.


Sign in / Sign up

Export Citation Format

Share Document