scholarly journals Biochar, Vermicompost, and Compost as Soil Organic Amendments: Influence on Growth Parameters, Nitrate and Chlorophyll Content of Swiss Chard (Beta vulgaris L. var. cycla)

Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 346 ◽  
Author(s):  
Angela Libutti ◽  
Vincenzo Trotta ◽  
Anna Rivelli

Soil addition with organic amendments is an issue that receives growing attention in the agricultural sector. However, the effects of such materials on plant growth and crop yield are highly variable in the literature. This study aims to evaluate the influence of soil addition with biochar (from vine pruning residues), vermicompost (from cattle manure), and three different composts (from olive pomace or cattle anaerobic digestate), on the quali-quantitative response of Swiss chard (Beta vulgaris L. var. cycla) grown in pots. The organic amendments were applied to the soil in two doses to provide 140 and 280 kg N ha−1, respectively. Two growth cycles were considered, and, at each leaf cut, plants were analyzed for growth parameters (height, fresh weight, leaf number, and leaf area) and qualitative characteristics (nitrogen, nitrate, and pigment leaf content). Swiss chard responded positively to organic amendment and, particularly when the soil was treated with compost from animal wastes, higher plant growth and pigment leaf content were observed. Nitrate leaf content was always well below the NO3− thresholds established by the European Commission Regulations. Biochar application did not show a positive effect on the quali-quantitative characteristics of Swiss chard, likely due to benefits that may be achieved over time.

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 307
Author(s):  
Angela Libutti ◽  
Anna Rita Rivelli

In recent years, soil addition with organic amendments, such as biochar and compost, has gained attention as an effective agronomic practice to sustain soil fertility, enhance plant growth and crop yield. Well known are the positive effects of compost on yield of a wide crop varieties, while both positive and negative responses are reported for biochar Therefore, the aim of the study was to verify the effect of biochar mixed with three types of compost on quanti-qualitative response of Swiss chard (Beta vulgaris L. cycla), a leafy green vegetable rich in dietary antioxidants, largely consumed worldwide. A factorial experiment in pots with two factors, including biochar (without biochar and with biochar from vine pruning residues) and compost (without compost, with compost from olive pomace, with vermicompost from cattle manure, and with compost from cattle anaerobic digestate), was setup. Two growth cycles were considered, and a set of quantitative (height of plants, number, area and fresh weight of leaves) and qualitative parameters (carotenoids, chlorophyll, total N, and NO3−content of leaves) were analyzed. Biochar decreased plant growth and NO3− leaf content; on the contrary, it increased total N leaf content, while compost improved all the considered parameters. The interactive effect of biochar and compost was evident only on total N and NO3− leaf content. In our experimental conditions, the compost showed to be the best option to improve Swiss chard growth and increase the content of phytopigments, while the biochar-compost mixtures did not produce the expected effect.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2050
Author(s):  
Bateer Baiyin ◽  
Kotaro Tagawa ◽  
Mina Yamada ◽  
Xinyan Wang ◽  
Satoshi Yamada ◽  
...  

Unlike in soil culture, a substrate (nutrient solution) in a hydroponics system can flow, and this can affect both nutrient uptake and plant growth. In this study, we hydroponically cultivated Swiss chard (Beta vulgaris L. ssp. cicla) under different flow rates to analyze changes in the growth, nutrient uptake, and nutrient use efficiency. When the flow rate was intensified from 2 to 4 L/min, leaf area, the fresh weight, dry weight, and root length increased. However, when the flow rate was increased from 4 to 8 L/min, values of these growth parameters decreased. The nutrient uptake had a similar trend relative to the growth parameters and nutrient use efficiency of macronutrient elements, increased as the flow rate increased. This indicates that the flow rate affects plant growth by influencing the nutrient uptake, and an increase in the flow rate can aid in improving nutrient use efficiency. In hydroponics, regulating the flow rate at a reasonable volume is recommended to increase yield by enhancing nutrient use efficiency, but too intensive a flow rate may cause excessive physical stimulation to plants and inhibit their growth. Therefore, it is important to choose an appropriate substrate flow rate for optimal hydroponics production.


Author(s):  
Angela Libutti ◽  
Anna Rita Rivelli

In recent years, soil addition with organic amendments, such as biochar and compost, has gained attention as an effective agronomic practice to sustain soil fertility, enhance plant growth and crop yield. Well known are the positive effects of compost on yield of a wide crop varieties, while both positive and negative responses are reported for biochar Therefore, the aim of the study was to verify the effect of biochar mixed with three types of compost on quanti-qualitative response of Swiss chard (Beta vulgaris L. cycla), a leafy green vegetable rich in dietary antioxidants, largely consumed worldwide. A factorial experiment in pots with two factors, including biochar (without biochar and with biochar from vine pruning residues) and compost (without compost, with compost from olive pomace, with vermicompost from cattle manure and with compost from cattle anaerobic digestate), was setup. Two growth cycles were considered and a set of quantitative (height of plants, number, area and fresh weight of leaves) and qualitative parameters (carotenoid, chlorophyll, total N and NO3-content of leaves) were analyzed. Biochar decreased plant growth and NO3- leaf content; on the contrary, it increased total N leaf content, while compost improved all the considered parameters. The interactive effect of biochar and compost was evident only on total N and NO3- leaf content. In our experimental conditions, the compost showed to be the best option to improve Swiss chard growth and increase the phytopigments content, while the biochar-compost mixtures didn’t produce the expected effect.


Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 75
Author(s):  
Amira K. Nasrallah ◽  
Ahmed A. Kheder ◽  
Maimona A. Kord ◽  
Ahmed S. Fouad ◽  
Mohamed M. El-Mogy ◽  
...  

Water salinity is one of the major abiotic stresses, and the use of saline water for the agricultural sector will incur greater demand in the coming decades. Recently, nanoparticles (NPs) have been used for developing numerous plant fertilizers as a smart and powerful form of material with dual action that can alleviate the adverse effects of salinity and provide the plant with more efficient nutrient forms. This study evaluated the influence of calcium phosphate NPs (CaP-NPs) as a soil fertilizer application on the production and bioactive compounds of broad bean plants under salinity stress. Results showed that salinity had deleterious effects on plant yield with 55.9% reduction compared to control. On the other hand, CaP-NPs dramatically improved plant yield by 30% compared to conventional fertilizer under salinity stress. This improvement could be attributed to significantly higher enhancement in total soluble sugars, antioxidant enzymes, proline content, and total phenolics recorded use of nano-fertilizer compared to conventional use under salt stress. Additionally, nano-fertilizer reflected better mitigatory effects on plant growth parameters, photosynthetic pigments, and oxidative stress indicators (MDA and H2O2). Therefore, our results support the replacement of traditional fertilizers comprising Ca2+ or P with CaP-nano-fertilizers for higher plant productivity and sustainability under salt stress.


2021 ◽  
Author(s):  
Ivica Djalovic ◽  
◽  
Vuk Radojevic ◽  
Vojislav Mihailovic ◽  
Sanja Vasiljevic ◽  
...  

Maize density is an important factor in cultivation which has significant effect on growth parameters. Newer hybrids have greater grain yield at higher plant densities than older hybrids. Differences in grain yield between older and newer maize hybrids were shown to be a function of plant population density. Optimum plant density for maximum grain yield per unit area may differ from hybrid to hybrid on account of significant interactions between hybrids and densities. Modern hybrids have shown tendencies to withstand higher levels of stress (i.e.- low N, high plant densities), which allow them to better sustain suitable photosynthetic rates, appropriate assimilate supplies, and maintain plant growth rates attributable to enhanced mineral nutrition and water use efficiency.


2020 ◽  
Vol 5 (3) ◽  
pp. 331-338
Author(s):  
Alemayehu Getahun ◽  
Diriba Muleta ◽  
Fassil Assefa ◽  
Solomon Kiros ◽  
Mariangela Hungria

 Land degradation is an endless challenge in the world. Thus, rehabilitation with organic amendments (OAs) is an urgent priority issue. The purpose of this study is to assess the effect of biochar and other OAs application on soil physicochemical properties and growth parameters of cover crops in greenhouse. Biochar, compost and manure were used as OAs. Soil samples were collected from nine random corners of 30 cm depth and composited. In each experiment, five treatments were considered (biochar, compost, manure, mixed and control) at 1:1 ratio of OAs and soil in a pot, with completely randomized design arrangement in triplicate. The field experiment was made on completely randomized block design and each block contained five 41 x 4 m plots assigned at random within the block and separated by 1 m walkways. OAs additions increased soil pH (5.69-8.13), cation exchange capacity (43.78-49.98 cmolc/kg), organic carbon (1.41-2.46%), organic matter (2.43-3.91%), total nitrogen (0.13-0.76%), available P (18.89-28.53 ppm) and (iron, Fe, manganese, Mn, copper, Cu and zinc, Zn) in comparison to non-treated soil. Tripartite treatments had the largest effect on the biomass of cover crops with 3.43 g fivefold of the control (0.7 g) in alfalfa and 4.54 g twofold of the control (2.07 g) in grass pea p ≤ 0.05. Both in field and greenhouse experiments combination of biochar and other OAs showed a better soil fertility increment and plant growth parameters. The study concluded that there is a synergistic effect in OAs on the soil fertility restoration and plant growth performance.


2020 ◽  
Vol 13 (2) ◽  
pp. 83-92 ◽  
Author(s):  
A. Adam

SummaryEnhancement of the resistance level in plants by rhizobacteria has been proven in several pathosystems. This study investigated the ability of four rhizobacteria strains (Pseudomonas putida BTP1 and Bacillus subtilis Bs2500, Bs2504 and Bs2508) to promote the growth in three barley genotypes and protect them against Cochliobolus sativus. Our results demonstrated that all tested rhizobacteria strains had a protective effect on barley genotypes Arabi Abiad, Banteng and WI2291. However, P. putida BTP1 and B. subtilis Bs2508 strains were the most effective as they reduced disease incidence by 53 and 38% (mean effect), respectively. On the other hand, there were significant differences among the rhizobacteria-treated genotypes on plant growth parameters, such as wet weight, dry weight, plant height and number of leaves. Pseudomonas putida BTP1 strain was the most effective as it significantly increased plant growth by 15-32%. In addition, the susceptible genotypes Arabi Abiad and WI2291 were the most responsive to rhizobacteria. This means that these genotypes have a high potential for increase of their resistance against the pathogen and enhancement of plant growth after the application of rhizobacteria. Consequently, barley seed treatment with the tested rhizobacteria could be considered as an effective biocontrol method against C. sativus.


1983 ◽  
Vol 14 (3) ◽  
pp. 155-166 ◽  
Author(s):  
Wm. Hogland ◽  
R. Berndtsson

The paper deals with the qualitative and quantitative characteristics of urban discharge. Ratios for urban discharge and recipient flow during different time intervals are presented and discussed. The quality of the urban discharge is illustrated through pollutographs.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Olga Marchut-Mikołajczyk ◽  
Piotr Drożdżyński ◽  
Arkadiusz Polewczyk ◽  
Wojciech Smułek ◽  
Tadeusz Antczak

Abstract Background Microbial surfactants called biosurfactants, thanks to their high biodegradability, low toxicity and stability can be used not only in bioremediation and oil processing, but also in the food and cosmetic industries, and even in medicine. However, the high production costs of microbial surfactants and low efficiency limit their large-scale production. This requires optimization of management conditions, including the possibility of using waste as a carbon source, such as food processing by-products. This papers describes the production and characterization of the biosurfactant obtained from the endophytic bacterial strain Bacillus pumilus 2A grown on various by-products of food processing and its potential applications in supporting plant growth. Four different carbon and nitrogen sources, pH, inoculum concentration and temperature were optimized within Taguchi method. Results Optimization of bioprocess within Taguchi method and experimental analysis revealed that the optimal conditions for biosurfactant production were brewer’s spent grain (5% w/v), ammonium nitrate (1% w/v), pH of 6, 5% of inoculum, and temperature at 30 °C, leading to 6.8 g/L of biosurfactant. Based on gas chromatography–mass spectrometry and Fourier transform infrared spectroscopy analysis produced biosurfactant was determined as glycolipid. Obtained biosurfactant has shown high and long term thermostability, surface tension of 47.7 mN/m, oil displacement of 8 cm and the emulsion index of 69.11%. The examined glycolipid, used in a concentration of 0.2% significantly enhanced growth of Phaseolus vulgaris L. (bean), Raphanus L. (radish), Beta vulgaris L. (beetroot). Conclusions The endophytic Bacillus pumilus 2A produce glycolipid biosurfactant with high and long tem thermostability, what makes it useful for many purposes including food processing. The use of brewer’s spent grain as the sole carbon source makes the production of biosurfactants profitable, and from an environmental point of view, it is an environmentally friendly way to remove food processing by products. Glycolipid produced by endophytic Bacillus pumilus 2A significantly improve growth of Phaseolus vulgaris L. (bean), Raphanus L. (radish), Beta vulgaris L. (beetroot). Obtained results provide new insight to the possible use of glycolipids as plant growth promoting agents.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 713
Author(s):  
Muna Ali Abdalla ◽  
Fengjie Li ◽  
Arlette Wenzel-Storjohann ◽  
Saad Sulieman ◽  
Deniz Tasdemir ◽  
...  

The main objective of the present study was to assess the effects of sulfur (S) nutrition on plant growth, overall quality, secondary metabolites, and antibacterial and radical scavenging activities of hydroponically grown lettuce cultivars. Three lettuce cultivars, namely, Pazmanea RZ (green butterhead, V1), Hawking RZ (green multi-leaf lettuce, V2), and Barlach RZ (red multi-leaf, V3) were subjected to two S-treatments in the form of magnesium sulfate (+S) or magnesium chloride (−S). Significant differences were observed under −S treatments, especially among V1 and V2 lettuce cultivars. These responses were reflected in the yield, levels of macro- and micro-nutrients, water-soluble sugars, and free inorganic anions. In comparison with the green cultivars (V1 and V2), the red-V3 cultivar revealed a greater acclimation to S starvation, as evidenced by relative higher plant growth. In contrast, the green cultivars showed higher capabilities in production and superior quality attributes under +S condition. As for secondary metabolites, sixteen compounds (e.g., sesquiterpene lactones, caffeoyl derivatives, caffeic acid hexose, 5-caffeoylquinic acid (5-OCQA), quercetin and luteolin glucoside derivatives) were annotated in all three cultivars with the aid of HPLC-DAD-MS-based untargeted metabolomics. Sesquiterpene lactone lactucin and anthocyanin cyanidin 3-O-galactoside were only detected in V1 and V3 cultivars, respectively. Based on the analyses, the V3 cultivar was the most potent radical scavenger, while V1 and V2 cultivars exhibited antibacterial activity against Staphylococcus aureus in response to S provision. Our study emphasizes the critical role of S nutrition in plant growth, acclimation, and nutritional quality. The judicious-S application can be adopted as a promising antimicrobial prototype for medical applications.


Sign in / Sign up

Export Citation Format

Share Document