scholarly journals Nutrient Dynamics in Switchgrass as a Function of Time

Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 940
Author(s):  
Joshua Massey ◽  
João Antonangelo ◽  
Hailin Zhang

There are wide variations in fertilizer recommendations for switchgrass (Panicum virgatum L.) as biofuel feedstock or forage. Inconsistent yield responses to fertilization are common. Nutrient translocation, from aboveground leaves and stems to belowground roots, is a contributor to variable, and sometimes the absence of, fertilizer response. A field study evaluated how major nutrients are cycled within switchgrass during the growing season. Aboveground (AG) and belowground (BG) biomasses were harvested and analyzed separately for yield (AG) and nutrient concentrations (AG and BG). Maximum yields were 26.3 (2008), 17.5 (2009) and 29.3 (2010) Mg ha−1 until senescence. In all years, the N concentration of the AG biomass decreased as the season progressed (p < 0.0001). The belowground biomass N concentration increased over time in 2008 and 2010 (p < 0.05). Phosphorus (P) and potassium (K) displayed similar trends to nitrogen concentration. Temporal changes of other nutrients in the AG and BG biomass concentrations were inconsistent and varied compared with N. The dynamics of the macronutrients suggested translocation from AG to BG as the switchgrass matured. Nutrients stored in roots can be beneficial for regrowth in the following growing season, which may reduce response to fertilizers. A greater understanding of nutrient cycling and harvest timing is needed to better manage different switchgrass production systems.

1992 ◽  
Vol 22 (8) ◽  
pp. 1089-1093 ◽  
Author(s):  
R. Trowbridge ◽  
F.B. Holl

An overdense lodgepole pine (Pinuscontorta Dougl. ex Loud.) stand was knocked down and the site was prepared by broadcast burn, windrow burn, or mechanical forest floor removal. Inoculated alsike clover (Trifoliumhybridum L.) was seeded at 0, 10, 20, and 30 kg/ha for the three different site preparation treatments to determine the effects of (i) site preparation on infection and effectiveness of the clover–Rhizobium symbiosis and clover percent cover and (ii) the clover–Rhizobium N2-fixing symbiosis on survival, early growth, and foliar nitrogen concentration of lodgepole pine seedlings. The N2-fixing symbiosis established well in all treatments. Clover percent cover increased with increasing rate of seeding, although by relatively few percent in the clover seeded plots. Broadcast burning, windrow burning, and mechanical forest floor removal did not affect the establishment of the N2-fixing symbiosis or clover percent cover. Lodgepole pine survival was not affected by the seeding treatments in any year, nor were height measurements during the first three growing seasons. Seedling height was slightly less in clover-seeded plots compared with controls in the fourth growing season. Lodgepole pine seedlings on clover-seeded plots had decreased diameter growth compared with controls during the first three growing seasons, but incremental diameter growth no longer showed this effect by the fourth growing season. Needle mass (g/100 needles) was less in clover-seeded plots at the end of the second growing season, but this effect was reversed by the fourth growing season, when both needle mass and foliar nitrogen concentration in lodgepole pine foliage were greater in clover-seeded plots.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 942
Author(s):  
Jeffrey M. Novak ◽  
Donald W. Watts ◽  
Gilbert C. Sigua ◽  
Thomas F. Ducey

Biochars are used for soil fertility improvement because they may contain certain elements that plants use as nutrients. However, few studies have demonstrated enhanced crop nutrient uptake. Our study examined nutrient uptake responses of corn (Zea Mays L.) grain and stover over 4 years (Y) after a Goldsboro sandy loam (fine-loamy, siliceous, sub-active, thermic Aquic Paleudults) received different designer biochars and a compost. The designer biochars were produced from lodgepole pine (Pinus contorta) chip (PC), poultry litter (PL), blends with switchgrass (SG; Panicum virgatum), and a SG compost alone. Topsoil treated with 100% PL biochar and blended PC:PL biochar had significantly greater Mehlich 1 (M1) extractable P, K and Na contents compared to the control or other treatments. No significant differences were detected in annual grain nutrient concentrations. In the first corn stover harvest (Y1), significantly greater concentrations of P and K were taken up after treatment with 100% PL biochar, with PC:PL blend and with SG when compared to control. By the fourth corn stover harvest (Y4), nutrient uptake between treatments was not significantly different. Biochar impact on corn stover P, K and Na concentrations was time dependent, suggesting that repeated biochar applications may be needed.


2021 ◽  
Author(s):  
Victor Burgeon ◽  
Julien Fouché ◽  
Sarah Garré ◽  
Ramin Heidarian-Dehkordi ◽  
Gilles Colinet ◽  
...  

&lt;p&gt;The amendment of biochar to soils is often considered for its potential as a climate change mitigation and adaptation tool through agriculture. Its presence in tropical agroecosystems has been reported to positively impact soil productivity whilst successfully storing C on the short&amp;#8201;and long-term. In temperate systems, recent research showed limited to no effect on productivity following recent biochar addition to soils. Its long-term effects on productivity and nutrient cycling have, however, been overlooked yet are essential before the use of biochar can be generalized.&lt;/p&gt;&lt;p&gt;Our study was set up in a conventionally cropped field, containing relict charcoal kiln sites used as a model for century old biochar (CoBC, ~220 years old). These sites were compared to soils amended with recently pyrolyzed biochar (YBC) and biochar free soils (REF) to study nutrient dynamics in the soil-water-plant system. Our research focused on soil chemical properties, crop nutrient uptake and soil solution nutrient concentrations. Crop plant samples were collected over three consecutive land occupations (chicory, winter wheat and a cover crop) and soil solutions gathered through the use of suctions cups inserted in different horizons of the studied Luvisol throughout the field.&lt;/p&gt;&lt;p&gt;Our results showed that YBC mainly influenced the soil solution composition whereas CoBC mainly impacted the total and plant available soil nutrient content. In soils with YBC, our results showed lower nitrate and potassium concentrations in subsoil horizons, suggesting a decreased leaching, and higher phosphate concentrations in topsoil horizons. With time and the oxidation of biochar particles, our results reported higher total soil N, available K and Ca in the topsoil horizon when compared to REF, whereas available P was significantly smaller. Although significant changes occurred in terms of plant available nutrient contents and soil solution nutrient concentrations, this did not transcend in variations in crop productivity between soils for neither of the studied crops. Overall, our study highlights that young or aged biochar behave as two distinct products in terms of nutrient cycling in soils. As such the sustainability of these soils differ and their management must therefore evolve with time.&lt;/p&gt;


2021 ◽  
Vol 61 (7) ◽  
pp. 690
Author(s):  
Gisele M. Fagundes ◽  
Gabriela Benetel ◽  
Mateus M. Carriero ◽  
Ricardo L. M. Sousa ◽  
Kelly C. Santos ◽  
...  

Context Plant bioactive compounds such as condensed tannins (CT) are seen as an alternative to rumen chemical modulators to mitigate rumen methanogenesis in livestock; however, the presence of CT in ruminant faeces also produces a series of changes in soil microbiomes. Little is known about these effects on soil nutrient dynamics. Therefore, whether CT affect the decomposition process of faecal organic matter, delaying it and consequently increasing soil carbon and nitrogen (N) sequestration, merits study. Aims Our study investigated the effects of a diet rich in CT on bovine faecal composition and on subsequent dynamics of a soil microbial population. Methods Faeces were analysed from cattle fed the following diets: control (no CT), 1.25% CT, 2.5% CT. In a greenhouse pot experiment over a period of 60 days, faeces from the three dietary treatments were applied to soil and the soil microbial populations were measured against a control with no faeces applied. Key results The presence of CT increased the excretion of faecal N and of neutral and acid detergent fibres and lignin, and the higher rate of CT reduced the rate of soil organic matter decomposition. Treatments with dietary CT resulted in greater total numbers of bacteria in the soil than in the no-faeces control and stimulated numbers of Actinobacteria, Proteobacteria (α-Proteobacteria) and Firmicutes. Conclusions The study showed that CT alter N recycling and other nutrient inputs in a soil–animal ecosystem by increasing faecal N inputs, delaying organic matter breakdown, and changing soil microbial dynamics. Implications The presence of CT in ruminant diets can be beneficial to the soil environment. Sustainable management practices should be encouraged by providing ruminants with feed including high-CT legumes in silvopastoral systems.


2002 ◽  
Vol 46 (8) ◽  
pp. 59-66 ◽  
Author(s):  
E. Okuş ◽  
A. Aslan-Yilmaz ◽  
A. Yüksek ◽  
S. Taş ◽  
V. Tüfekçi

As part of a five years monitoring project “Water Quality Monitoring of the Strait of Istanbul”, February-December 1999 nutrient dynamics of the Black Sea-the Sea of Marmara transect are studied to evaluate the effect of discharges given by deep disposals. Through a one-year study, upper layer nutrient concentrations were generally under the effect of northwestern-shelf Black Sea originated waters. This effect was strictly observed in July, when the upper layer flow was the thickest. On the other hand, partly in November but especially in December the northwestern-shelf Black Sea originated water flow was a minimum resulting in similar concentrations in both layers. Nutrient fluctuations also affected the chlorophyll a and POC concentrations as parameters of productivity. The nutrient concentrations decreased with the effect of spring bloom and highest chlorophyll a values were detected in November at Strait stations that did not match to the Sea of Marmara values. This fact represents the time-scale difference between the Black Sea and the Sea of Marmara. On the contrary, high nutrient concentrations in the lower layer (especially inorganic phosphate), and therefore low N:P ratios reflect the effect of deep discharge. Vertical mixing caused by meteorological conditions of the shallow station (M3) under the effect of surface discharges resulted in homogenous distribution of nutrients. Nutrient concentrations of the stations affected by deep discharge showed that the two-layer stratification of the system did not permit the discharge mix to the upper layer.


1976 ◽  
Vol 87 (2) ◽  
pp. 293-296 ◽  
Author(s):  
A. Gupta ◽  
M. C. Saxena

SummaryLeaf samples were collected, at weekly intervals, throughout the growing season, from potato (Solanum tuberosumL.) plants supplied with varying amounts of nitrogen (0, 60, 120, 180 and 240 kg N/ha) and analysed for total N. Application of nitrogen increased the N concentration in the green leaves at all stages of growth. There was a significant curvilinear relationship between the final tuber yield and the total N concentration in the leaves at 48–90 days after planting in 1968–9 and at 79–107 days after planting in 1969–70. The N concentration at 70–90 days after planting was consistently related to the final tuber yield in both years. Thus this period was ideal for assessing the nitrogen status of potato plants. The critical concentration of total nitrogen generally decreased with advance in age. It ranged from 4·65% at 76 days to 3·30% at 90 days during 1968–9, whereas in 1969–70 it ranged from 4·20% at 79 days to 3·80% at 93 days. During the period from 83 to 86 days the critical percentage was around 3·6% in both the years.


Plants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 5 ◽  
Author(s):  
Muhammad Amjad ◽  
Hasan Raza ◽  
Behzad Murtaza ◽  
Ghulam Abbas ◽  
Muhammad Imran ◽  
...  

Nickel (Ni) is among the essential micronutrient heavy metals utilized by plants. However, an elevated level of Ni causes serious concerns for plants’ physiology and their survival. This study evaluated the mechanisms influencing the growth, physiology, and nutrient dynamics in two commercial maize hybrids (Syngenta and Pioneer) exposed to Ni treatments in hydroponics nutrient solution (NS). Seedlings were raised in plastic trays with quartz sand, and subsequently transferred to Hoagland’s NS at the two leaves stage. After three days of transplantation, Ni levels of 0, 20, and 40 mg L−1 were maintained in the nutrient solution. After 30 days of Ni treatments, seedlings were harvested and different growth, physiological, and nutrient concentrations were determined. The results showed that with increasing Ni concentration, the growth of maize hybrids was significantly reduced, and the maize hybrid, Pioneer, showed significantly higher growth than that of Syngenta at all levels of Ni. Higher growth in Pioneer is ascribed to elevated levels of antioxidant enzymes (SOD, CAT, GR, APX, and POX), lower damage to cellular membranes (i.e., higher MSI and lower MDA), and higher tissue nutrient concentrations (N, P, K, Ca, Mg, Fe, Mn, Zn, and Cu). Furthermore, the maize hybrids showed a difference in nutrient translocation from root to shoot which could be one of the factors responsible for differential response of these hybrids against Ni treatments.


Author(s):  
Shengkui Cao ◽  
Qi Feng ◽  
Jianhua Si ◽  
Yonghong Su ◽  
Zongqiang Chang ◽  
...  

Foliar d13C values are often used to denote the long-term water use efficiency (WUE) of plants whereas long-term nitrogen use efficiency (NUE) are usually estimated by the ratio of C to N in the leaves. Seasonal variations of d13C values, foliar nitrogen concentration and C/N ratios of Populus euphratica and Tamarix ramosissima grown under five different microhabitats of Ejina desert riparian oasis of northwestern arid regions in China were studied. The results indicated that T. ramosissima had higher d13C value compared with that of P. euphratica. The N concentration and C/N ratios of two species were not significantly different. The seasonal pattern of three indexes in two species was different. The d13C values and N concentration decreased during the plant’s growth period. However, the change of C/N ratios was increased. Among microhabitats, there were higher d13C values and N concentration as well as lower C/N ratios in the Dune and Gobi habitats. Foliar d13C values significantly and positively correlated with N concentration in P. euphratica and T. ramosissima, whereas a significantly negative correlation between d13C values and C/N ratios was found for P. euphratica. This relation in T. ramosissima was weak, but there was a significant quadratic curve relationship between d13C values and C/N ratios, which revealed that there was a trade-off between WUE and NUE for P. euphratica and in natural condition, P. euphratica could not improve WUE and NUE simultaneously. T. ramosissima could simultaneously enhance WUE and NUE. The above characters of WUE and NUE in two plants reflected the different adaptations of desert species to environmental condition.


2020 ◽  
Vol 12 (14) ◽  
pp. 5822
Author(s):  
Huong Thi Thuy Dao ◽  
Jeong Min Seo ◽  
Jonathan O. Hernandez ◽  
Si Ho Han ◽  
Woo Bin Youn ◽  
...  

Knowledge on growth and nutrient uptake characteristics of urban trees and effective strategies to grow trees can help accomplish the goal of urban afforestation initiatives in a sustainable way. Thus, the study investigated the effects of different vermicompost (VC) application placements on the growth and nutrient uptake of three contrasting tree species (fast-growing Betula platyphylla and Larix kaempferi and slow-growing Chamaecyparis obtusa) to provide implications for growing tree stocks for sustainable urban afforestation programs. Five placement methods were used in the greenhouse trial: no fertilization (CON), surface placement (VCs), subsurface placement at 6-cm depth (VCc), bottom placement (35-cm depth (VCb)), and mixed with soil (VCm). We measured the growth parameters such as height, root collar diameter (RCD), and biomass and analyzed foliar nutrient concentrations in response to different placement treatments of VC. Relative height growth was the highest at VCc (132% (B. platyphylla), 114% (L. kaempferi)) and VCs ((57%) C. obtusa). Significant improvement in aboveground and belowground biomass growth of all species at VCs and VCc compared to the other treatments was also observed. Generally, VC treatments significantly increased N concentration compared to CON in all species. In conclusion, fertilizing the fast- and slow-growing urban tree species using VCs and/or VCc is relevant to growing high quality planting stocks for sustainable urban afforestation purposes.


2017 ◽  
Vol 9 (8) ◽  
pp. 229 ◽  
Author(s):  
Nigusie Girma ◽  
Asnake Fikre ◽  
Chris O. Ojiewo

Development of irrigation-based chickpea production is considered the most important alternative approach in combating climate change and maximizing productivity, especially in moisture-stress areas and in areas where water and land for irrigation is available. In central Ethiopia, where production of chickpea (especially Kabuli type) is becoming an important part of agriculture, although many superior varieties (both desi and Kabuli types) are available, they have been evaluated and released based on rainfed production. Hence, there is an urgent need for evaluation of varieties suited for irrigation-based production. Towards this goal, during the 2012/13 growing season, 14 Kabuli genotypes (previously introduced) and 24 desi genotypes (nurseries obtained from ICRISAT) were evaluated independently at three and one locations respectively (Kabuli at Debre Zeit, Ambo and Werer; desi at Debre Zeit) for production adaptation under irrigation. The parameters evaluated were date of maturity, 100-seed weight and yield. Overall, while most Kabuli genotypes showed high adaptability to irrigation-based production at all locations, four Kabuli genotypes (X96TH-52-14/2000 = 106.7DAS, FLIP-02-39C = 107DAS, X98TH-51-1-3 = 107.9DAS and ICCV-07313 = 107DAS) were found to be earlier in maturity; two genotypes (ICCV-07313 = 42.5 g and ICCV-04305 = 37.8 g) were identified as having high 100-seed weight and one genotype (ICCV-05309 = 3228.8 kg/ha or 32 quintals/ha) out yielded all genotypes across locations. The result of combined analysis indicated five promising genotypes showing more than 20 kg/ha yield on average. All desi varieties showed maturity dates of under four months; six genotypes showed higher 100-seed weight and eight genotypes showed promising yield responses (> 2000 kg/ha). From these preliminary results, it can be deduced that irrigation can play a significantly complementary role to the rainfed system, provided the genetics by management is optimized through research and innovation.


Sign in / Sign up

Export Citation Format

Share Document