scholarly journals In-Feed Supplementation of Resin Acid-Enriched Composition Modulates Gut Microbiota, Improves Growth Performance, and Reduces Post-Weaning Diarrhea and Gut Inflammation in Piglets

Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2511
Author(s):  
Md Karim Uddin ◽  
Shah Hasan ◽  
Md. Rayhan Mahmud ◽  
Olli Peltoniemi ◽  
Claudio Oliviero

The weaning process represents a delicate phase for piglets, and is often characterized by lower feed intake, lower weight gain, diarrhea, and ultimately increased mortality. We aimed to determine the effects of RAC supplementation in diets on improving piglet growth and vitality, reducing post-weaning diarrhea, and enhancing gut health. In a 2 × 2 × 2 factorial experiment, we selected forty sows and their piglets. Piglets were followed until seven weeks of age. There were no significant differences found between RAC treated and control piglets until weaning (p = 0.26). However, three weeks after weaning, RAC treated piglets had higher body weight and average daily growth (ADG) than the control piglets (p = 0.003). In addition, the piglets that received RAC after weaning, irrespective of mother or prior creep feed treatment, had lower post-weaning diarrhea (PWD) and fecal myeloperoxidase (MPO) level than control piglets. Gut microbiota analysis in post-weaning piglets revealed that RAC supplementation significantly increased Lachnospiraceae_unclassified, Blautia, Butyricicoccus, Gemmiger and Holdemanella, and decreased Bacteroidales_unclassified. Overall, RAC supplementation to piglets modulated post-weaning gut microbiota, improved growth performance after weaning, reduced post-weaning diarrhea and reduced fecal myeloperoxidase levels. We therefore consider RAC to be a potential natural feed supplement to prevent enteric infections and improve growth performance in weaning piglets.

2014 ◽  
Vol 59 (No. 7) ◽  
pp. 327-336 ◽  
Author(s):  
L. Hu ◽  
L. Che ◽  
G. Su ◽  
Y. Xuan ◽  
G. Luo ◽  
...  

The effects of yeast-derived protein (YP) on growth performance, intestinal health, and oxidative status of weanling piglets were investigated. A total of 80 weaned piglets (PIC 327 × 1050, 26 ± 2 days old, 6.20 ± 0.10 kg) were randomly allocated into 2 groups, 5 pens per each group and 8 piglets per each pen, receiving control diet and diet with inclusion of 4% YP at the expenses of fish meal (YP diet) for a period of 28 days. The diets were formulated to contain similar nutrient levels. Compared with control, piglets fed YP diet had markedly higher overall average daily growth (+14%, P < 0.05) and lower final feed conversion ratio (−8%, P < 0.01). Concentrations of serum serine, cystathionine, histidine, hydroxyproline, and urea were decreased in piglets fed YP diet (P < 0.05), whereas alanine and aspartate were increased (P < 0.01). Moreover, serum antioxidant enzyme activity (glutathione peroxidase) was markedly increased (+19%, P < 0.01) in piglets fed YP diet relative to piglets fed control diet. In addition, feeding YP diet considerably (P < 0.05) increased the copy numbers of lactobacilli and total bacteria in the colon of piglets at the end of the experiment. Furthermore, the mRNA abundance of innate immunity-related genes (TLR4, NF-κB1, and IL-6) was increased (P < 0.06) in the ileum of piglets fed YP diet. Collectively, results of this study indicated that diet with the inclusion of YP improved growth performance and partially enhanced anti-oxidative capability as well as intestinal innate immunity of weaning piglets.


2021 ◽  
Vol 22 (19) ◽  
pp. 10392
Author(s):  
Mebratu Melaku ◽  
Ruqing Zhong ◽  
Hui Han ◽  
Fan Wan ◽  
Bao Yi ◽  
...  

Intestinal dysfunction of farm animals, such as intestinal inflammation and altered gut microbiota, is the critical problem affecting animal welfare, performance and farm profitability. China has prohibited the use of antibiotics to improve feed efficiency and growth performance for farm animals, including poultry, in 2020. With the advantages of maintaining gut homeostasis, enhancing digestion, and absorption and modulating gut microbiota, organic acids are regarded as promising antibiotic alternatives. Butyric and citric acids as presentative organic acids positively impact growth performance, welfare, and intestinal health of livestock mainly by reducing pathogenic bacteria and maintaining the gastrointestinal tract (GIT) pH. This review summarizes the discovery of butyric acid (BA), citric acid (CA) and their salt forms, molecular structure and properties, metabolism, biological functions and their applications in poultry nutrition. The research findings about BA, CA and their salts on rats, pigs and humans are also briefly reviewed. Therefore, this review will fill the knowledge gaps of the scientific community and may be of great interest for poultry nutritionists, researchers and feed manufacturers about these two weak organic acids and their effects on intestinal health and gut microbiota community, with the hope of providing safe, healthy and nutrient-rich poultry products to consumers.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 212-213
Author(s):  
xia xiong ◽  
Lvliang Wu ◽  
Yirui Shao ◽  
Jian zou ◽  
Yulong Yin

Abstract Glucan has been studied as a potential alternative to antibiotics for animals in recent years. The aim of this study was to evaluate the effect of dietary glucan on growth performance and gut health of weaning piglets, which is a water-soluble extracellular ꞵ-glucan produced by Agrobacterium sp. ZX09. A total of 108 weaned piglets (21 d of age; 6.05 ± 0.36 kg) were randomly assigned (6 pens/diet; 18 piglets/pen) to 3 dietary treatments consisting of a basal diet (control group) or the basal diet supplemented with 20 ppm olaquindox or 200 ppm glucan for 14 days, respectively. The results showed that piglets fed with glucan had greater (P < 0.05) body weight and average daily gain than piglets in control group. Piglets fed with glucan or antibiotic had greater villus height to crypt depth ratio on duodenum compared with control group (P < 0.05). The mRNA expression of Claudin-1 on duodenum or ileum was higher (P < 0.05) in glucan group than that on the other groups. The mRNA expression of TLR4, MYD88 and NFκB on jejunum were lower (P < 0.05) in glucan or antibiotic group than those in control group. Dietary supplementation with glucan tended to increase the IL-10 and SIgA concentration on ileum (0.05 < P < 0.1). Dietary supplementation with glucan tended to increase the total antioxidant capacity on jejunum (P = 0.093). In conclusion, 200 ppm glucan or 20 ppm olaquindox can improve the growth performance of weaning piglets. The glucan may can accelerate the growth of weaned piglets by improving gut health. This research will provide guidance for the olaquindox alternative on growing piglets.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hyun Sik Kim ◽  
Tae Woong Whon ◽  
Hojun Sung ◽  
Yun-Seok Jeong ◽  
Eun Sung Jung ◽  
...  

AbstractCalf diarrhea is associated with enteric infections, and also provokes the overuse of antibiotics. Therefore, proper treatment of diarrhea represents a therapeutic challenge in livestock production and public health concerns. Here, we describe the ability of a fecal microbiota transplantation (FMT), to ameliorate diarrhea and restore gut microbial composition in 57 growing calves. We conduct multi-omics analysis of 450 longitudinally collected fecal samples and find that FMT-induced alterations in the gut microbiota (an increase in the family Porphyromonadaceae) and metabolomic profile (a reduction in fecal amino acid concentration) strongly correlate with the remission of diarrhea. During the continuous follow-up study over 24 months, we find that FMT improves the growth performance of the cattle. This first FMT trial in ruminants suggest that FMT is capable of ameliorating diarrhea in pre-weaning calves with alterations in their gut microbiota, and that FMT may have a potential role in the improvement of growth performance.


2020 ◽  
Vol 86 (13) ◽  
Author(s):  
Samiullah Khan ◽  
Robert J. Moore ◽  
Dragana Stanley ◽  
Kapil K. Chousalkar

ABSTRACT The microbiota plays a vital role in maintaining gut health and influences the overall performance of chickens. Most gut microbiota-related studies have been performed in broilers, which have different microbial communities compared to those of layers. The normal gut microbiota of laying chickens is dominated by Proteobacteria, Firmicutes, Bacteroidetes, Fusobacteria, and Actinobacteria at the phylum level. The composition of the gut microbiota changes with chicken age, genotype, and production system. The metabolites of gut microbiota, such as short-chain fatty acids, indole, tryptamine, vitamins, and bacteriocins, are involved in host-microbiota cross talk, maintenance of barrier function, and immune homeostasis. Resident gut microbiota members also limit and control the colonization of foodborne pathogens. In-feed supplementations of prebiotics and probiotics strengthen the gut microbiota for improved host performance and colonization resistance to gut pathogens, such as Salmonella and Campylobacter. The mechanisms of action of prebiotics and probiotics come through the production of organic acids, activation of the host immune system, and production of antimicrobial agents. Probiotic candidates, including Lactobacillus, Bifidobacterium, Bacillus, Saccharomyces, and Faecalibacterium isolates, have shown promising results toward enhancing food safety and gut health. Additionally, a range of complex carbohydrates, including mannose oligosaccharides, fructo-oligosaccharides, and galacto-oligosaccharides, and inulin are promising candidates for improving gut health. Here, we review the potential roles of prebiotics and probiotics in the reshaping of the gut microbiota of layer chickens to enhance gut health and food safety.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jing Liang ◽  
Shasha Kou ◽  
Cheng Chen ◽  
Sayed Haidar Abbas Raza ◽  
Sihu Wang ◽  
...  

Abstract Background Weaning stress of piglets causes a huge economic loss to the pig industry. Balance and stability of the intestinal microenvironment is an effective way to reduce the occurance of stress during the weaning process. Clostridium butyricum, as a new microecological preparation, is resistant to high temperature, acid, bile salts and some antibiotics. The aim of present study is to investigate the effects of C. butyricum on the intestinal microbiota and their metabolites in weaned piglets. Results There was no statistical significance in the growth performance and the incidence of diarrhoea among the weaned piglets treated with C. butyricum during 0–21 days experimental period. Analysis of 16S rRNA gene sequencing results showed that the operational taxonomic units (OTUs), abundance-based coverage estimator (ACE) and Chao index of the CB group were found to be significantly increased compared with the NC group (P < 0.05). Bacteroidetes, Firmicutes and Tenericutes were the predominant bacterial phyla in the weaned piglets. A marked increase in the relative abundance of Megasphaera, Ruminococcaceae_NK4A214_group and Prevotellaceae_UCG-003, along with a decreased relative abundance of Ruminococcaceae_UCG-005 was observed in the CB group, when compared with the NC group (P < 0.05). With the addition of C. butyricum, a total of twenty-two significantly altered metabolites were obtained in the feces of piglets. The integrated pathway analysis by MetaboAnalyst indicated that arginine and proline metabolism; valine, leucine and isoleucine biosynthesis; and phenylalanine metabolism were the main three altered pathways, based on the topology. Furthermore, Spearman’s analysis revealed some altered gut microbiota genus such as Oscillospira, Ruminococcaceae_NK4A214_group, Megasphaera, Ruminococcaceae_UCG-005, Prevotella_2, Ruminococcaceae_UCG-002, Rikenellaceae_RC9_gut_group and Prevotellaceae_UCG-003 were associated with the alterations in the fecal metabolites (P < 0.05), indicating that C. butyricum presented a potential protective impact through gut microbiota. The intestinal metabolites changed by C. butyricum mainly involved the variation of citrulline, dicarboxylic acids, branched-chain amino acid and tryptophan metabolic pathways. Conclusions Overall, this study strengthens the idea that the dietary C. butyricum treatment can significantly alter the intestinal microbiota and metabolite profiles of the weaned piglets, and C. butyricum can offer potential benefits for the gut health.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 172-173
Author(s):  
Rafael A Cabrera

Abstract The objective of this study was to evaluate the effects of feeding two phytogenics compunds on growth performance and carcass characteristics in grow-finish pigs. Activo is a phytogenic feed additive consisting of a blend of microencapsulated secondary plant compounds used as an alternative to antibniotics to support gut health and overall animal performance. The study was desgined as a split plot design with 2 treatments (Activo and Control) with 44 replicates each and 22 pigs per pen. Pigs were alloted by weight (41.9 kgs in average) and age (about 12 weeks of age). Three dietary feeding phases were used. Grow-finish phase 1 (9-16 weeks post weaning) containing 13.6 g/ton of Skycis plus the tested phytogenics; grow-finish phase 2 had the tested phytogenics and finally gorw-finish phase 3 had 6.75 g/ton of Ractopamine plus the tested phytogenics. There were no siginifcant differences between the two groups on overal growth performance and mortality. Carcass characteristics data was analyzed by combining harvest cuts 1 and 2. Cut 1 was performed 15 days after the supplementation of Ractopamine and cut 2 when the barn was empty. This includes 27 pens for the Activo group and 30 pens for the Control group due to carcass data that was removed or missing. Any pen with a harvest cut missing 3 or more carcasses was removed from the data set. The Acitvo group had heavier (P = 0.03) hot carcass weigh (101.7 vs. 100.3 kgs, respectively) and higher (P = 0.04) carcass yield % (76.3 vs. 75.8%, respectively) when compared to the Control group. There was a tendency for the Activo group to have higher (P = 0.06) Longissimus muscel depth than the Control group. In conclusion, the Activo group appears to be a better alternative to antibiotics than the competitor phytogenic.


2021 ◽  
Vol 9 (4) ◽  
pp. 787
Author(s):  
Deborah Adewole ◽  
Fisayo Akinyemi

High-energy-density diet could increase body weight at the expense of the intestinal health of the animals. In order to optimize production without negatively influencing the gut health of chickens, dietary supplementation with bacitracin methylene disalicylate (BMD) is a common feeding strategy adopted to enhance production performance and intestinal health. Studies have suggested that BMD could improve chicken growth performance and gut health through modulation of the gut microbiota. The current study investigated the effect of BMD supplementation in a normal-energy (NE) or high-energy (HE) diet on growth performance, organ weights, jejunal morphology, and gut microbiota of broiler chickens at different growth stages. Birds were allocated to four treatments: normal-energy basal diet (NE-BAS), normal-energy BMD diet (NE-BMD), high-energy basal diet (HE-BAS), and high-energy BMD diet (HE-BMD). In the starter phase, body weight and body weight gain were reduced significantly (p < 0.05) in chickens fed HE diets compared to those fed NE diets. The FCR was significantly higher (p < 0.05) in birds fed HE-BMD diets in the starter phase but lower (p < 0.05) during the grower phase when compared to other treatments. Moreover, the relative bursa weight increased significantly (p = 0.0220) among birds that received HE diets. Birds fed HE-BMD had greater villus height (p = 0.054) than NE-BMD group. Among the chickens fed the HE diets, those that received BMD treatment had a significantly increased (p = 0.003) villus width (13.3% increase) compared to those that received the basal diet. Improved population of Firmicutes was observed in chickens fed HE-BMD diet when compared to HE-BAS. Our results imply that BMD may be more effective in improving intestinal health when supplemented in a high-energy diet for broiler chickens.


2021 ◽  
Vol 8 ◽  
Author(s):  
Dongming Yu ◽  
Yaoyao Xia ◽  
Liangpeng Ge ◽  
Bie Tan ◽  
Shuai Chen

Post-weaning diarrhea of piglets is associated with gut microbiota dysbiosis and intestinal pathogen infection. Recent studies have shown that Lactococcus lactis (L.lactis) could help suppress pathogen infection. This study aimed to investigate the effects of L.lactis on various factors related to growth and immunity in weaning piglets. The results showed that L.lactis improved the growth performance, regulated the amino acid profile (for example, increasing serum tryptophan and ileal mucosal cystine) and the intestinal GABAergic system (including inhibiting ileal gene expression of SLC6A13, GABAAρ1, π, θ, and γ1, and promoting ileal GABAAα5 expression). L.lactis also modulated intestinal immunity by promoting jejunal interleukin 17, 18, 22, ileal toll-like receptor 2, 5, 6, and myeloid differentiation primary response protein 88 gene expression while inhibiting jejunal interferon-γ and ileal interleukin 22 expressions. L.lactis highly affected the intestinal microbiota by improving the beta diversity of gut microbiota and the relative abundance of Halomonas and Shewanella. In conclusion, L.lactis improved the growth performance and regulated amino acid profiles, intestinal immunity and microbiota in weaning piglets.


Sign in / Sign up

Export Citation Format

Share Document