scholarly journals Chlorine Removal from U.S. Solid Waste Blends through Torrefaction

2020 ◽  
Vol 10 (9) ◽  
pp. 3337
Author(s):  
Zhuo Xu ◽  
Josh W. Albrecht ◽  
Shreyas S. Kolapkar ◽  
Stas Zinchik ◽  
Ezra Bar-Ziv

The amount of solid waste generated annually is increasing around the world. Although the waste has a high calorific value, one major obstacle that may prevent it from becoming a feedstock for power applications is the existence of polyvinyl chloride (PVC), which causes corrosion and emission issues after combustion due to its high chlorine content. Torrefaction is known to release hydrochloric acid; thus, it has been applied in this study for the reduction of chlorine from potential waste feedstocks. Fiber-plastic (60–40%) waste blends, with different chlorine content levels, as well as PVC were used in the current study. Torrefaction was conducted at 400 °C. Chlorine and heat content were measured. Experimental results showed that organically bonded chlorine was reduced during torrefaction as a function of mass loss. The chlorine removal efficiency was only dependent on temperature and residence time, not chlorine level. The heat content of the sample increased with mass loss up to a maximum of ~34 MJ/kg at ~45% mass loss. It was also observed that at ~30% mass loss, the organic chlorine content per unit heat content reduced by ~90%, while the heat content was ~32 MJ/kg, and ~90% energy was retained.

1987 ◽  
Vol 60 (2) ◽  
pp. 310-318 ◽  
Author(s):  
S. E. Walter

Abstract PVC content in thermoplastic materials can be determined from the total chlorine or more specifically from organic chlorine content. Organic chlorine content can be determined by ASTM D 1551 using the described modifications. Presence of reactive fillers such as CaCO3 results in large negative errors. When reactive fillers are expected to be present, the quantity of PVC should be determined with methods measuring total chlorine or by TGA. TGA can be used successfully for the analysis of such samples. Plasticizers and PVC stabilizers are extracted before analysis to eliminate interfering or variable mass loss in PVC thermograms. This technique can also be used for the analysis of PVC/NBR mixtures. In unknown compounds, the technique should be used in conjunction with FTIR analysis to facilitate polymer identification and to rule out interference by other halogenated polymers. Excess of unreacted CaCO3 can be observed and the amount determined from thermograms. Remaining CaCO3 can be determined from mass loss due to elimination of CO2. If a cooling step is introduced before the atmosphere is switched from nitrogen to air, a clearer separation of residue oxidation and CO2 elimination are obtained. On reheating, residue oxidation then takes place between 450 and 500°C, well separated from CO2 elimination at about 700°C. Variation of thermograms using PVC obtained by different polymerization procedures needs to be further investigated. Structural differences and thermal stability of PVC samples made by emulsion, suspension, and bulk polymerization have been examined by various techniques, but no thermogravimetric data are given.


Proceedings ◽  
2021 ◽  
Vol 52 (1) ◽  
pp. 4
Author(s):  
Roberta Mota-Panizio ◽  
Luis F. Carmo-Calado ◽  
Octávio Alves ◽  
Catarina Nobre ◽  
J. L. Silveira ◽  
...  

The behavior of chars from the carbonization process were studied when the lignocellulosic biomass was incorporated into the waste of electrical and electronic equipment for chlorine removal. Tests were performed at 300°C with a heating rate of 15°C/min and residence time of 60 min. Compositions studied had 100, 75, 50, 25 and 0% of waste electrical and electronic equipment (WEEE) in the mixtures. The composition of 50% WEEE with 50% lignocellulosic biomass presented the best char properties, having an increment of the calorific value in 5.5% relative to the initial value, and chlorine removal of 23.4% when compared to the forestry biomass.


2016 ◽  
Vol 99 ◽  
pp. 1253-1261 ◽  
Author(s):  
V.S. Yaliwal ◽  
N.R. Banapurmath ◽  
R.S. Hosmath ◽  
S.V. Khandal ◽  
Wojciech M. Budzianowski

2010 ◽  
Vol 64 (2) ◽  
Author(s):  
Agnieszka Zawadzka ◽  
Liliana Krzystek ◽  
Stanisław Ledakowicz

AbstractTo carry out autothermal drying processes during the composting of biomass, a horizontal tubular reactor was designed and tested. A biodrying tunnel of the total capacity of 240 dm3 was made of plastic material and insulated with polyurethane foam to prevent heat losses. Municipal solid waste and structural plant material were used as the input substrate. As a result of autothermal drying processes, moisture content decreased by 50 % of the initial moisture content of organic waste of about 800 g kg−1. In the tested cycles, high temperatures of biodried waste mass were achieved (54–56°C). An appropriate quantity of air was supplied to maintain a satisfactory level of temperature and moisture removal in the biodried mass and high energy content in the final product. The heat of combustion of dried waste and its calorific value were determined in a calorimeter. Examinations of pyrolysis and gasification of dried waste confirmed their usefulness as biofuel of satisfactory energy content.


2010 ◽  
Vol 7 (4) ◽  
pp. 1254-1257 ◽  
Author(s):  
K. H. Shivaprasad ◽  
M. M. Nagabhushana ◽  
C. Venkataiah

Ash, an inorganic matter present in coal is amenable for dissolution using suitable reagents. Thus the dissolution of ash and its subsequent removal reduces the release of many toxic elements into the environment by coal based industries. Removal of ash also enhances the calorific value. In the present investigation an attempt has been made to reduce the ash content of raw coal obtained from nearest thermal power by using hydrochloric acid, sulfuric acid and sodium hydroxide. A series of leaching experiments were conducted on coal of different size fractions by varying the parameters like concentration, temperature and time of leaching. The results indicate that it is possible to remove nearly 75% of ash from coal sample by leaching.


2018 ◽  
Vol 37 (6) ◽  
pp. 578-589 ◽  
Author(s):  
Imane Boumanchar ◽  
Younes Chhiti ◽  
Fatima Ezzahrae M’hamdi Alaoui ◽  
Abdelaziz Sahibed-dine ◽  
Fouad Bentiss ◽  
...  

Municipal solid waste (MSW) management presents an important challenge for all countries. In order to exploit them as a source of energy, a knowledge of their calorific value is essential. In fact, it can be experimentally measured by an oxygen bomb calorimeter. This process is, however, expensive. In this light, the purpose of this paper was to develop empirical models for the prediction of MSW higher heating value (HHV) from ultimate analysis. Two methods were used: multiple regression analysis and genetic programming formalism. Both techniques gave good results. Genetic programming, however, provides more accuracy compared to published works in terms of a great correlation coefficient (CC) and a low root mean square error (RMSE).


2015 ◽  
Vol 74 (4) ◽  
Author(s):  
Hesam Kamyab ◽  
Jeng Shiun Lim ◽  
Tayebeh Khademi ◽  
Wai Shin Hod ◽  
Rahmalan Ahmad ◽  
...  

Waste generation nowadays is rising in the world and it seems hard to prevent it. Solid Waste Management (SWM) has been a major problem worldwide in most of the fast growing towns and cities among the developing countries all around the world. Food waste and green waste constitute high volumes of municipal solid waste (MSW). The application of compost in the agricultural sector can contribute to sustainable soil health and other co-benefits. The compost produced from biological waste does not contain any chemicals unfavorable to living soil. The objective of this research was to calculate the greenhouse gas emission from the compost processed from the food and green wastes generated on-campus in Universiti Teknologi Malaysia (UTM) as a pilot project. The result indicated that the composting process promotes the university as a green campus by converting organic wastes into valuable products such as organic fertilizer.


2021 ◽  
Vol 926 (1) ◽  
pp. 012009
Author(s):  
S A C R Darmawan ◽  
A L Sihombing ◽  
D G Cendrawati

Abstract The government has regulated the use of RDF biomass for coal co-firing in power plants. This paper examines biomass (Eichhornia Crassipes and municipal solid waste) characteristics and its potential use as RDF for co-firing in CPP. The method includes the analysis of the composition, supply of raw materials, and biomass characteristics. These results will compare with the coal’s characteristics in CPP. The density of Eichhornia Crassipes in Lake Tondano was 25 kg/m2, with the wet mass of 45,350 tons. The results of the Eichhornia Crassipes sample test for parameters of moisture content, volatile matter, ash content, fix carbon and gross calorific value have a value range of 93%, 5.8-7.1%, 60.21-63.5%, 17.9-22%, 11.4% and 2681-3068 kcal/kg. Amurang CPP uses coal with 4200 kcal/kg calories as much as 1056 tons/day. The co-firing target of 5% requires 52.8 tons of biomass per day. The existing Eichhornia Crassipes biomass in Lake Tondano only supplies the CPP for 62 days. MSW typically has calorific values and moisture with Eichhornia Crassipes biomass, about 3766-4194 kcal/kg and 31.7-87.1%. The use of MSW to cover the lack of Eichhornia Crassipes will ensure the sustainability of the supply of biomass raw materials in the co-firing program at CPP.


2018 ◽  
Vol 54 (2A) ◽  
pp. 56
Author(s):  
Phung Chi Vy

Domestic solid wastes are classified into 10 samples of 04 groups with different sizes: 2 samples with sizes under and over 120 mm (M1-1, M1-2); 2 samples with sizes under and over 80 mm (M2-1, M2-2); 2 samples with sizes under and over 40 mm (M3-1, M3-2); 4 samples with sizes under 40 mm, 40 to 80 mm, 80 to 120 mm and over 120 mm (M4-1, M4-2, M4-3, M4-4). Results of sorting 10 solid waste samples into food, cloth, wood, plastic, paper, rubber/leather, metal, glass, other organic and inorganic components shown that recycled combustible, non-recycled combustible portions are ranged from 15,46 to 93,90 %, from 5,34 to 80,17 %, respectively. The density of 10 compressed garbage samples is ranged from 525,9 to 2016,7 kg/m3; moisture contents are ranged from 18.03 to 20.92 %. Ash content is ranged from 1.12 to 9.49 % dry weight; Calorific value is ranged from 3164,9 to 5757,0 kcal/kg of garbage. The volume of leached water from 10 kg wet garbage pressed by 250 kg load in 2 days is 300 ml (equivalent to 327,1 g). Results of elemental composition analysis shown that the contents of C, H, N, Cl, S are ranged from 35,00 to 51,96, from 6,01 to 6,23, from 0,41 to 0,88, from 0,44 to 0,56, from 0,14 to 0,84 %, respectively. On this basis, the author have proposed a waste-to-energy plant with capacity of 250 tons of waste/day to generate the electricity with capacity of 17,0 MW/day.


Sign in / Sign up

Export Citation Format

Share Document