scholarly journals Performance Study of Nano/SiO2 Films and the Antimicrobial Application on Cantaloupe Fruit Shelf-Life

2021 ◽  
Vol 11 (9) ◽  
pp. 3879
Author(s):  
Rokayya Sami ◽  
Ebtihal Khojah ◽  
Abeer Elhakem ◽  
Nada Benajiba ◽  
Mahmoud Helal ◽  
...  

In the current study, novel films with chitosan/nano/SiO2/nisin films and their antimicrobial application on cantaloupe fruit shelf-life have been studied. Novel films were prepared by the addition of 1% chitosan, 1% nano silicon dioxide, and 1% nisin and freeze-dried for the performance study. Physicochemical properties such as tensile strength, optical, and thermal properties with the performance characteristics of the novel films were measured. Coated and uncoated cantaloupes with various coating solutions were stored and chilled at 4 °C in a relative humidity of 70% for up to nine days. The microbial population measurements have been detected every three days. Results show that the fourier transform infrared intensity (FTIR) of nano/SiO2 and with the addition of nisin (nano/SiO2/n) were higher than chitosan (CH) film except in the wavenumber (3150–3750 cm−1) films peaks. Novel nanofilms enhanced tensile strength as well as optical and thermal properties. XRD analysis reported two distinct peak values of 32.08 and 45.99 to correspond to nano/SiO2/n film orientation (7095) and (3316), respectively. Zeta potential values and turbidity were increased, while nano/SiO2 films decreased the hydrophobicity of the film surface by 80.07°. The coating treatments with nano/SiO2 and nano/SiO2/n both reduced the yeast and mold counts 2.49 and 1.92 log CFU/g, respectively, on day nine. In summary, chitosan/nano/SiO2/n novel film improved the functional properties of coating films, and those bio-nanocomposites are effective in food packaging.

2021 ◽  
Vol 4 (1) ◽  
pp. 43
Author(s):  
Reno Susanto ◽  
W Revika ◽  
Irdoni Irdoni

Edible film is a packaging that has the advantage of being easily degraded so that it does not cause environmental problems such as plastic waste which can pollute the environment. Edible film is considered to have good prospects for application in food ingredients, one of which is meat, because meat has a limited shelf life. The addition of antimicrobial ingredients to the edible film in the form of essential oil of basil leaves is useful for reducing microbial growth. The purpose of this study was to make edible films to extend the shelf life of frozen meat, utilize banana peels and durian seeds as the main ingredients for making edible films and use basil essential oil as an antimicrobial agent. The stages of activities carried out in this study included the preparation of raw materials for waste banana peels, durian seeds, and basil leaves. This stage includes the extraction process of each ingredient that produces pectin from banana peels, starch from durian seeds, and essential oil from basil leaves. Furthermore, the making of edible films from these raw materials varied the ratio between the mass of pectin and starch. The formed edible films were analyzed using FTIR, attractiveness test, and microbial growth testing by comparing meat coated with edible film and meat not coated with edible film. The characteristics of the edible film produced are 0.1 mm thick with a tensile strength value of 64.65 MPa - 75.34 MPa and a percent elongation value of 0.318% - 0.36%. The best edible film was produced at a ratio of 4: 1 (pectin: starch) with the addition of antimicrobials which had a film thickness of 0.1 mm with a tensile strength value of 75.34 MPa and 0.35% elongation percent.


Author(s):  
Arini Ulfah M.R ◽  
Syahrul Humaidi ◽  
Kurnia Sembiring

Biofoam material has been made for application of styrofoam substitute food packaging material from a mixture of raw materials: taro leaf powder and PVAc through a hot compaction method with variations of the composition of taro leaf powder: PVAc (80:20)% wt, (75:25)% wt, (70 : 30)% wt, (65:35) wt%, (60:40) wt%, (55:45)% wt, (50:50)% wt and (45:50)% wt. The first stage of taro leaves was blended and sifted with 100 mesh particle size. The second stage of the leaf powder of taro mixed with wet mixing was then mixed with PVAc as a matrix. The third stage of the homogeneous mixture was then put into the mold then compressed by heat to make it more dense with a pressure of 100 MPa and held for 10 minutes at 60 oC. Each biofoam sample that is ready to be characterized includes: physical properties (density, water absorption, functional groups and biodegredability), mechanical properties (tensile strength, elastic modulus, and elongation) and thermal properties (melting points). The characterization results showed that taro leaf powder: the optimum PVAc was (45: 55) wt% with a density value of 0.744 x 103 kg/m3, water absorption capacity of 1.765%, composed of OH and CH groups of PVAc and cellulose and C = C groups of lignin so that it has degrading properties of 91.2% for 50 days. Mechanical properties with tensile strength of 0.357 MPa, elastic modulus of 1.449 MPa, and elongation of 246.416%. Thermal properties with a melting point of 350.21 oC whose results have met the standards of conventional brand Synbra Technology. The results of biofoam material based on composite taro leaves and PVAc can be applied as food packaging.


2014 ◽  
Vol 6 (1) ◽  
pp. 27 ◽  
Author(s):  
Desi Mustika Amaliyah

Durian (Durio zibethinus) and cempedak (Artocarpus integer) peels waste are not used by the society. The research aim is to extract pectin from durian and cempedak peels and to formulate the pectin into edible films for food packaging. The research stages were first pre-treatment of durian and cempedak peels, pectin extraction, pectin drying, and  pectin application as edible films with concentration of 0%, 5%, and 15%. Based on this research it was concluded that pectin can be extracted from durian and cempedak peels with yield result of 27.97 % and 55.58 %, respectively. Edible film obtained has  similar characteristics between raw materials cempedak and durian peels. The higher concentration of cempedak peel  pectin increased the thickness, but decreased the tensile strength and elongation at a concentration of 15%. While in edible films from durian peel pectin, the higher concentration of pectin decreased the thickness of edible film on pectin concentration of 15%, lowered tensile strength and raised the edible film elongation.Keywords: waste, durian, cempedak, pectin extraction, edible film


1970 ◽  
pp. 01-04
Author(s):  
Esameldin B. M. Kabbashi, Ghada H. Abdelrahman and Nawal A. Abdlerahman

Guava (Psidium guajava L.) is a lovely tropical and subtropical fruit that originates in Mexico, Central America, and then taken to other distant and near parts around the world. In Sudan this popular fruit is produced in orchards and household and is so profitable but yet attacked by a lot of fruit fly species of the Genera Ceratitis and Bactrocera and the result is a loss of more than 70%. This research aimed at evaluating the effect of Gum Arabic coating (GAC) in extending the shelf life of guava fruit and disinfesting it from these notorious pests. Guava fruits from Kadaro orchards, Khartoum North, were tested using seven concentrations of Gum Arabic solutions. The results reflect that 1: 4 (25%) and 1: 8 (12.5%) (GA: water) concentrations attained 56 and 40% disinfestation, respectively whereas the other lower concentrations effected corresponding results in a range from 20 – 08%. The reduction in maggots per test fruit reached upto 188% as compared to the control.  The highest concentrations (1: 4 & 1: 8) effected a sustainability of 52% in fruit firmness (FF) with an average of medium (3) FF compared to soft FF (4) in the control. The corresponding results in other lower concentrations (1: 16; 1: 32; 1: 64; 1: 72 & 1: 96) were 36, 24, 24, 20 and 16%, respectively. In addition to an average FF of 4 (soft) for all these concentrations and 5 (very soft) for all the corresponding controls. Nevertheless, the sustainability of fruit color (FC) effected by the test concentrations was 52, 44, 24, 22, 24, 20, and 24%, respectively. Regarding these results, the two highest test concentrations effected a sizeable disinfestation and control of fruit flies and a good extension of shelf life of guava in Khartoum State. These findings support using this treatment as an effective IPM tool to extend guava fruit shelf life and upgrading its postharvest quality.


2020 ◽  
Author(s):  
Renu Jaisinghani ◽  
Vishnu Vasant Dayare

Edible film and coatings are been looked upon for preservation of fruits, vegetables and bakery products. Extended shelf life with preservation of natural properties of food is always been a challenge; by incorporation of bio-actives in edible coatings, the shelf life can be increased as they are known for their antioxidant and antimicrobial properties. With this view, present study was undertaken, where edible coatings were prepared from starch, gelatin and glycerol and incorporated with Lemon peel extracts and coated on apples for increased shelf life. Antimicrobial activity of Lemon peel extracts was studied on eight organisms by broth dilution method and were found to be effective at concentration 3mg/mL-9mg/mL for bacteria and 50mg/mL- 90mg/mL for fungi. Fuji apples coated with starch-gelatin based edible formulation containing lemon peel extracts were studied for the effect of coating on fruit shelf life during storage for 28 days. Incorporation of lemon peel extract into edible coating improved shelf life with reducing rate of browning of apples.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 940
Author(s):  
Michael G. Kontominas ◽  
Anastasia V. Badeka ◽  
Ioanna S. Kosma ◽  
Cosmas I. Nathanailides

Seafood products are highly perishable, owing to their high water activity, close to neutral pH, and high content of unsaturated lipids and non-protein nitrogenous compounds. Thus, such products require immediate processing and/or packaging to retain their safety and quality. At the same time, consumers prefer fresh, minimally processed seafood products that maintain their initial quality properties. The present article aims to review the literature over the past decade on: (i) innovative, individual packaging technologies applied to extend the shelf life of fish and fishery products, (ii) the most common combinations of the above technologies applied as multiple hurdles to maximize the shelf life of seafood products, and (iii) the respective food packaging legislation. Packaging technologies covered include: Modified atmosphere packaging; vacuum packaging; vacuum skin packaging; active food packaging, including oxygen scavengers; carbon dioxide emitters; moisture regulators; antioxidant and antimicrobial packaging; intelligent packaging, including freshness indicators; time–temperature indicators and leakage indicators; retort pouch processing and edible films; coatings/biodegradable packaging, used individually or in combination for maximum preservation potential.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1944
Author(s):  
Alma Antonia Pérez-Mondragón ◽  
Carlos Enrique Cuevas-Suárez ◽  
Jesús García-Serrano ◽  
Nayely Trejo-Carbajal ◽  
A. Lobo-Guerrero ◽  
...  

This work reports the use of two monomers with two tertiary amines and four methacrylic (TTME) or acrylic (TTAC) terminal groups as co-initiators in the formulation of experimental resin adhesive systems. Both monomers were characterized by FT-IR and 1H NMR spectroscopies. The control adhesive was formulated with BisGMA, TEGDMA, HEMA, and the binary system CQ-EDAB as a photo-initiator system. For the experimental adhesives, the EDAB was completely replaced for the TTME or the TTAC monomers. The adhesives formulated with TTME or TTAC monomers achieved double bond conversion values close to 75%. Regarding the polymerization rate, materials formulated with TTME or TTAC achieved lower values than the material formulated with EDAB, giving them high shelf-life stability. The degree of conversion after shelf simulation was only reduced for the EDAB material. Ultimate tensile strength, translucency parameter, and micro-tensile bond strength to dentin were similar for control and experimental adhesive resins. Due to their characteristics, TTME and TTAC monomers are potentially useful in the formulation of photopolymerizable resins for dental use with high shelf-life stability.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Olugbenga O. Oluwasina ◽  
Bolaji P. Akinyele ◽  
Sunday J. Olusegun ◽  
Olayinka O. Oluwasina ◽  
Nelcy D. S. Mohallem

AbstractThe adverse environmental effects of petroleum-based packaging plastics have necessitated the need for eco-friendly bioplastics. Most bioplastics are starch-based and are not without drawbacks, hence there is the need for their properties to be improved. In this study, the effect of varying concentrations of dialdehyde starch and silica solutions on the physical, mechanical, biodegradable, surface topology, and thermal properties of the bioplastic films was examined. The additive concentrations were varied from 60 to 100%. The bioplastic films produced with dialdehyde starch solution recorded better moisture content (6.62–11.85%), bioplastic film solubility (4.23–7.90%), and tensile strength (1.63–3.06 MPa), against (11.24–14.26%), (7.77–19.27%) and (0.53–0.73 MPa) respectively for bioplastic films produced with silica solution. The atomic force microscopy analysis; root-mean-square roughness, kurtosis, and skewness revealed better miscibility and compatibility between the starch matrix and the dialdehyde solution than between the starch matrix and the silica solution. Bioplastic with added dialdehyde starch solution has better tensile strength and long biodegradability than that with silica solution. The research has demonstrated that bioplastic film produced with starch and dialdehyde starch solution has better properties than the one produced with starch and silica solution. The properties evaluation results of the bioplastic films thus demonstrated their aptness for food packaging applications. Graphic abstract


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1146
Author(s):  
Zuzanna Żołek-Tryznowska ◽  
Alicja Kałuża

Starch films can be used as materials for food packaging purposes. The goal of this study is to compare how the starch origin influence the selected starch film properties. The films were made from various starches such as that from maize, potato, oat, rice, and tapioca using 50%w of glycerine as a plasticizer. The obtained starch-based films were made using the well-known casting method from a starch solution in water. The properties of the films that were evaluated were tensile strength, water vapour transition rate, moisture content, wettability, and their surface free energy. Surface free energy (SFE) and its polar and dispersive components were calculated using the Owens-Wendt-Rabel-Kaelbe approach. The values of SFE in the range of 51.64 to 70.81 mJ∙m−2 for the oat starch-based film and the maize starch-based film. The films revealed worse mechanical properties than those of conventional plastics for packaging purposes. The results indicated that the poorest tensile strength was exhibited by the starch-based films made from oat (0.36 MPa) and tapioca (0.78 MPa) and the greatest tensile strength (1.49 MPa) from potato.


Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 121
Author(s):  
Ghita Amor ◽  
Mohammed Sabbah ◽  
Lucia Caputo ◽  
Mohamed Idbella ◽  
Vincenzo De Feo ◽  
...  

The essential oil (EO) from basil—Ocimum basilicum—was characterized, microencapsulated by vibration technology, and used to prepare a new type of packaging system designed to extend the food shelf life. The basil essential oil (BEO) chemical composition and antimicrobial activity were analyzed, as well as the morphological and biological properties of the derived BEO microcapsules (BEOMC). Analysis of BEO by gas chromatography demonstrated that the main component was linalool, whereas the study of its antimicrobial activity showed a significant inhibitory effect against all the microorganisms tested, mostly Gram-positive bacteria. Moreover, the prepared BEOMC showed a spheroidal shape and retained the EO antimicrobial activity. Finally, chitosan-based edible films were produced, grafted with BEOMC, and characterized for their physicochemical and biological properties. Since their effective antimicrobial activity was demonstrated, these films were tested as packaging system by wrapping cooked ham samples during 10 days of storage, with the aim of their possible use to extend the shelf life of the product. It was demonstrated that the obtained active film can both control the bacterial growth of the cooked ham and markedly inhibit the pH increase of the packaged food.


Sign in / Sign up

Export Citation Format

Share Document