scholarly journals Cellular Plasticity of Mammary Epithelial Cells Underlies Heterogeneity of Breast Cancer

Biomedicines ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 103 ◽  
Author(s):  
Verónica Rodilla ◽  
Silvia Fre

The hierarchical relationships between stem cells, lineage-committed progenitors, and differentiated cells remain unclear in several tissues, due to a high degree of cell plasticity, allowing cells to switch between different cell states. The mouse mammary gland, similarly to other tissues such as the prostate, the sweat gland, and the respiratory tract airways, consists of an epithelium exclusively maintained by unipotent progenitors throughout adulthood. Such unipotent progenitors, however, retain a remarkable cellular plasticity, as they can revert to multipotency during epithelial regeneration as well as upon oncogene activation. Here, we revise the current knowledge on mammary cell hierarchies in light of the most recent lineage tracing studies performed in the mammary gland and highlight how stem cell differentiation or reversion to multipotency are at the base of tumor development and progression. In addition, we will discuss the current knowledge about the interplay between tumor cells of origin and defined genetic mutations, leading to different tumor types, and its implications in choosing specific therapeutic protocols for breast cancer patients.

Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 965
Author(s):  
Sixuan Li ◽  
Hongquan Zhang ◽  
Xiaofan Wei

Deubiquitinase (DUB) is an essential component in the ubiquitin—proteasome system (UPS) by removing ubiquitin chains from substrates, thus modulating the expression, activity, and localization of many proteins that contribute to tumor development and progression. DUBs have emerged as promising prognostic indicators and drug targets. DUBs have shown significant roles in regulating breast cancer growth, metastasis, resistance to current therapies, and several canonical oncogenic signaling pathways. In addition, specific DUB inhibitors have been identified and are expected to benefit breast cancer patients in the future. Here, we review current knowledge about the effects and molecular mechanisms of DUBs in breast cancer, providing novel insight into treatments of breast cancer-targeting DUBs.


Author(s):  
Joris Mallard ◽  
Elyse Hucteau ◽  
Thomas J. Hureau ◽  
Allan F. Pagano

Breast cancer represents the most commonly diagnosed cancer while neoadjuvant and adjuvant chemotherapies are extensively used in order to reduce tumor development and improve disease-free survival. However, chemotherapy also leads to severe off-target side-effects resulting, together with the tumor itself, in major skeletal muscle deconditioning. This review first focuses on recent advances in both macroscopic changes and cellular mechanisms implicated in skeletal muscle deconditioning of breast cancer patients, particularly as a consequence of the chemotherapy treatment. To date, only six clinical studies used muscle biopsies in breast cancer patients and highlighted several important aspects of muscle deconditioning such as a decrease in muscle fibers cross-sectional area, a dysregulation of protein turnover balance and mitochondrial alterations. However, in comparison with the knowledge accumulated through decades of intensive research with many different animal and human models of muscle atrophy, more studies are necessary to obtain a comprehensive understanding of the cellular processes implicated in breast cancer-mediated muscle deconditioning. This understanding is indeed essential to ultimately lead to the implementation of efficient preventive strategies such as exercise, nutrition or pharmacological treatments. We therefore also discuss potential mechanisms implicated in muscle deconditioning by drawing a parallel with other cancer cachexia models of muscle wasting, both at the pre-clinical and clinical levels.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Fang Wang ◽  
Qihan Wang ◽  
Vakul Mohanty ◽  
Shaoheng Liang ◽  
Jinzhuang Dou ◽  
...  

AbstractWe present a Minimal Event Distance Aneuploidy Lineage Tree (MEDALT) algorithm that infers the evolution history of a cell population based on single-cell copy number (SCCN) profiles, and a statistical routine named lineage speciation analysis (LSA), whichty facilitates discovery of fitness-associated alterations and genes from SCCN lineage trees. MEDALT appears more accurate than phylogenetics approaches in reconstructing copy number lineage. From data from 20 triple-negative breast cancer patients, our approaches effectively prioritize genes that are essential for breast cancer cell fitness and predict patient survival, including those implicating convergent evolution.The source code of our study is available at https://github.com/KChen-lab/MEDALT.


Endocrinology ◽  
2013 ◽  
Vol 154 (5) ◽  
pp. 1701-1710 ◽  
Author(s):  
Ran Rostoker ◽  
Keren Bitton-Worms ◽  
Avishay Caspi ◽  
Zila Shen-Orr ◽  
Derek LeRoith

Abstract Epidemiological and experimental studies have identified hyperinsulinemia as an important risk factor for breast cancer induction and for the poor prognosis in breast cancer patients with obesity and type 2 diabetes. Recently it was demonstrated that both the insulin receptor (IR) and the IGF-IR mediate hyperinsulinemia's mitogenic effect in several breast cancer models. Although IGF-IR has been intensively investigated, and anti-IGF-IR therapies are now in advanced clinical trials, the role of the IR in mediating hyperinsulinemia's mitogenic effect remains to be clarified. Here we aimed to explore the potential of IR inhibition compared to dual IR/IGF-IR blockade on breast tumor growth. To initiate breast tumors, we inoculated the mammary carcinoma Mvt-1 cell line into the inguinal mammary fat pad of the hyperinsulinemic MKR female mice, and to study the role of IR, we treated the mice bearing tumors with the recently reported high-affinity IR antagonist-S961, in addition to the well-documented IGF-IR inhibitor picropodophyllin (PPP). Although reducing IR activation, with resultant severe hyperglycemia and hyperinsulinemia, S961-treated mice had significantly larger tumors compared to the vehicle-treated group. This effect maybe secondary to the severe hyperinsulinemia mediated via the IGF-1 receptor. In contrast, PPP by partially inhibiting both IR and IGF-IR activity reduced tumor growth rate with only mild metabolic consequences. We conclude that targeting (even partially) both IR and IGF-IRs impairs hyperinsulinemia's effects in breast tumor development while simultaneously sparing the metabolic abnormalities observed when targeting IR alone with virtual complete inhibition.


ISRN Oncology ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Aamir Ahmad

Breast cancer remains a deadly disease, even with all the recent technological advancements. Early intervention has made an impact, but an overwhelmingly large number of breast cancer patients still live under the fear of “recurrent” disease. Breast cancer recurrence is clinically a huge problem and one that is largely not well understood. Over the years, a number of factors have been studied with an overarching aim of being able to prognose recurrent disease. This paper attempts to provide an overview of our current knowledge of breast cancer recurrence and its associated challenges. Through a survey of the literature on cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), various signaling pathways such as Notch/Wnt/hedgehog, and microRNAs (miRNAs), we also examine the hypotheses that are currently under investigation for the prevention of breast cancer recurrence.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3765
Author(s):  
Xiaoli Zhang ◽  
Kimerly Powell ◽  
Lang Li

Despite recent advances in diagnosis and treatment, breast cancer (BC) is still a major cause of cancer-related mortality in women. Breast cancer stem cells (BCSCs) are a small but significant subpopulation of heterogeneous breast cancer cells demonstrating strong self-renewal and proliferation properties. Accumulating evidence has proved that BCSCs are the driving force behind BC tumor initiation, progression, metastasis, drug resistance, and recurrence. As a heterogeneous disease, BC contains a full spectrum of different BC subtypes, and different subtypes of BC further exhibit distinct subtypes and proportions of BCSCs, which correspond to different treatment responses and disease-specific outcomes. This review summarized the current knowledge of BCSC biomarkers and their clinical relevance, the methods for the identification and isolation of BCSCs, and the mechanisms regulating BCSCs. We also discussed the cellular origin of BCSCs and the current advances in single-cell lineage tracing and transcriptomics and their potential in identifying the origin and lineage development of BCSCs.


Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1790 ◽  
Author(s):  
Marta Sereno ◽  
Mafalda Videira ◽  
Imola Wilhelm ◽  
István A. Krizbai ◽  
Maria Alexandra Brito

MicroRNAs (miRNAs) are small non-coding RNAs that mainly act by binding to target genes to regulate their expression. Due to the multitude of genes regulated by miRNAs they have been subject of extensive research in the past few years. This state-of-the-art review summarizes the current knowledge about miRNAs and illustrates their role as powerful regulators of physiological processes. Moreover, it highlights their aberrant expression in disease, including specific cancer types and the differential hosting-metastases preferences that influence several steps of tumorigenesis. Considering the incidence of breast cancer and that the metastatic disease is presently the major cause of death in women, emphasis is put in the role of miRNAs in breast cancer and in the regulation of the different steps of the metastatic cascade. Furthermore, we depict their involvement in the cascade of events underlying breast cancer brain metastasis formation and development. Collectively, this review shall contribute to a better understanding of the uniqueness of the biologic roles of miRNAs in these processes, to the awareness of miRNAs as new and reliable biomarkers and/or of therapeutic targets, which can change the landscape of a poor prognosis and low survival rates condition of advanced breast cancer patients.


2021 ◽  
Author(s):  
Diana P. Saraiva ◽  
Bruna F. Correia ◽  
Rute Salvador ◽  
Nídia de Sousa ◽  
António Jacinto ◽  
...  

AbstractNeutrophils are prominent immune components of solid tumors, which can protect against the onset of cancer (N1) or have pro-tumor activity (N2). Circulating neutrophils, divided into high density neutrophils (HDN) and low density neutrophils (LDN), functionally mirror those N1 and N2 cells, respectively. LDN, a rare subset in non-pathological conditions, have been extensively studied in cancer, due to their frequency in this disease and their pro-tumor phenotype. However, this has been mainly demonstrated in animal models and proper validation in humans is an urgent need. Here, we further enlighten the clinical impact of LDN in a cohort of breast cancer (BC) patients. We observed that LDN were practically absent in healthy donors’ blood, while were significantly increased in the blood of BC patients, particularly with metastatic disease. Relevant for a clinical translation, within the population of non-metastatic patients, LDN were more prevalent in patients with poor response to neoadjuvant chemotherapy than in responders. The association of a higher incidence of circulating LDN and the worse prognosis of BC patients could be explained by the pro-tumor/immunosuppressive characteristics exhibited by these cells. Namely, there are more LDN expressing the immunosuppressive marker PD-L1, than HDN. Additionally, LDN also showed increased expression of activation markers; a robust formation of neutrophil extracellular traps; an augmented phagocytic activity; and a higher capacity to release reactive oxygen species, which may contribute for tumor development and metastization. Moreover, the percentage of LDN in BC patients’ blood was negatively correlated with activated cytotoxic T lymphocytes and positively correlated with the immunosuppressive CCR4+ regulatory T cells, corroborating their impairment on the anti-tumor immune responses, which was further demonstrated ex vivo. Hence, this study reveals the potential of LDN as a clinical meaningful biomarker of BC response to treatment and opens new avenues for developing targeted immunotherapies.


Biology Open ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. bio051649
Author(s):  
Akash Gupta ◽  
Geetanjali Gupta ◽  
Rajeshwari R. Mehta ◽  
David Z. Ivancic ◽  
Rashidra R. Walker ◽  
...  

Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1351 ◽  
Author(s):  
Nora Jung ◽  
Veronique Maguer-Satta ◽  
Boris Guyot

Estrogens are major regulators of the mammary gland development, notably during puberty, via estrogen receptor (ER) activation, leading to the proliferation and differentiation of mammary cells. In addition to estrogens, the bone morphogenetic proteins (BMPs) family is involved in breast stem cell/progenitor commitment. However, these two pathways that synergistically contribute to the biology of the normal mammary gland have also been described to initiate and/or promote breast cancer development. In addition to intrinsic events, lifestyle habits and exposure to environmental cues are key risk factors for cancer in general, and especially for breast cancer. In the latter case, bisphenol A (BPA), an estrogen-mimetic compound, is a critical pollutant both in terms of the quantities released in our environment and of its known and speculated effects on mammary gland biology. In this review, we summarize the current knowledge on the actions of BMPs and estrogens in both normal mammary gland development and breast cancer initiation, dissemination, and resistance to treatment, focusing on the dysregulations of these processes by BPA but also by other bisphenols, including BPS and BPF, initially considered as safer alternatives to BPA.


Sign in / Sign up

Export Citation Format

Share Document