scholarly journals Temozolomide in Glioblastoma Therapy: Role of Apoptosis, Senescence and Autophagy. Comment on Strobel et al., Temozolomide and Other Alkylating Agents in Glioblastoma Therapy. Biomedicines 2019, 7, 69

Biomedicines ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 90 ◽  
Author(s):  
Bernd Kaina

Temozolomide, a DNA methylating drug, is currently being used first-line in glioblastoma therapy. Although the mode of action of this so-called SN1 alkylating agent is well described, including the types of induced DNA damage triggering the DNA damage response and survival and death pathways, some researchers expressed doubt that data mostly obtained by in vitro models can be translated into the in vivo situation. In experimental settings, high doses of the agent are often used, which are likely to activate responses triggered by base N-alkylations instead of O6-methylguanine (O6MeG), which is the primary cytotoxic lesion induced by low doses of temozolomide and other methylating drugs in O6-methylguanine-DNA methyltransferase (MGMT) repair incompetent cells. However, numerous studies provided compelling evidence that O6MeG is not only a mutagenic, but also a powerful toxic lesion inducing DNA double-strand breaks, apoptosis, autophagy and cellular senescence. MGMT, repairing the lesion through methyl group transfer, is a key node in protecting cells against all these effects and has a significant impact on patient’s survival following temozolomide therapy, supporting the notion that findings obtained on a molecular and cellular level can be translated to the therapeutic setting in vivo. This comment summarizes the current knowledge on O6MeG-triggered pathways, including dose dependence and the question of thresholds, and comes up with the conclusion that data obtained on cell lines using low dose protocols are relevant and apoptosis, autophagy and senescence are therapeutically important endpoints.

2020 ◽  
Vol 20 ◽  
Author(s):  
Nur Najmi Mohamad Anuar ◽  
Nurul Iman Natasya Zulkafali ◽  
Azizah Ugusman

: Matrix metalloproteinases (MMPs) are a group of zinc-dependent metallo-endopeptidase that are responsible towards the degradation, repair and remodelling of extracellular matrix components. MMPs play an important role in maintaining a normal physiological function and preventing diseases such as cancer and cardiovascular diseases. Natural products derived from plants have been used as traditional medicine for centuries. Its active compounds, such as catechin, resveratrol and quercetin, are suggested to play an important role as MMPs inhibitors, thereby opening new insights into their applications in many fields, such as pharmaceutical, cosmetic and food industries. This review summarises the current knowledge on plant-derived natural products with MMP-modulating activities. Most of the reviewed plant-derived products exhibit an inhibitory activity on MMPs. Amongst MMPs, MMP-2 and MMP-9 are the most studied. The expression of MMPs is inhibited through respective signalling pathways, such as MAPK, NF-κB and PI3 kinase pathways, which contribute to the reduction in cancer cell behaviours, such as proliferation and migration. Most studies have employed in vitro models, but a limited number of animal studies and clinical trials have been conducted. Even though plant-derived products show promising results in modulating MMPs, more in vivo studies and clinical trials are needed to support their therapeutic applications in the future.


2019 ◽  
Author(s):  
Luiza Da Cunha Stankevicins ◽  
Marta Urbanska ◽  
Daniel AD. Flormann ◽  
Emmanuel Terriac ◽  
Zahra Mostajeran ◽  
...  

AbstractDendritic cells use amoeboid migration through constricted passages to reach the lymph nodes, and this homing function is crucial for immune responses. Amoeboid migration requires mechanical resilience, however, the underlying molecular mechanisms for this type of migration remain unknown. Because vimentin intermediate filaments (IFs) and microfilaments regulate adhesion-dependent migration in a bidirectional manner, we analyzed if they exert a similar control on amoeboid migration. Vimentin was required for cellular resilience, via a joint interaction between vimentin IFs and F-actin. Reduced actin mobility in the cell cortex of vimentin-reduced cells indicated that vimentin promotes Factin subunit exchange and dynamics. These mechano-dynamic alterations in vimentin-deficient dendritic cells impaired amoeboid migration in confined environments in vitro and blocked lymph node homing in mouse experiments in vivo. Correct nuclear positioning is important in confined amoeboid migration both to minimize resistance and to avoid DNA damage. Vimentin-deficiency also led to DNA double strand breaks in the compressed dendritic cells, pointing to a role of vimentin in nuclear positioning. Together, these observations show that vimentin IF-microfilament interactions provide both the specific mechano-dynamics required for dendritic cell migration and the protection the genome needs in compressed spaces.Summary statementVimentin — in joint action with actin — mediates the mechanical stiffness of cells required for amoeboid cell migration through confined spaces and protects the nucleus from DNA damage.


2016 ◽  
Vol 13 (114) ◽  
pp. 20150679 ◽  
Author(s):  
Philip J. Murray ◽  
Bart Cornelissen ◽  
Katherine A. Vallis ◽  
S. Jon Chapman

DNA double-strand breaks (DSBs) are formed as a result of genotoxic insults, such as exogenous ionizing radiation, and are among the most serious types of DNA damage. One of the earliest molecular responses following DSB formation is the phosphorylation of the histone H2AX, giving rise to γ H2AX. Many copies of γ H2AX are generated at DSBs and can be detected in vitro as foci using well-established immuno-histochemical methods. It has previously been shown that anti- γ H2AX antibodies, modified by the addition of the cell-penetrating peptide TAT and a fluorescent or radionuclide label, can be used to visualize and quantify DSBs in vivo . Moreover, when labelled with a high amount of the short-range, Auger electron-emitting radioisotope, 111 In, the amount of DNA damage within a cell can be increased, leading to cell death. In this report, we develop a mathematical model that describes how molecular processes at individual sites of DNA damage give rise to quantifiable foci. Equations that describe stochastic mean behaviours at individual DSB sites are derived and parametrized using population-scale, time-series measurements from two different cancer cell lines. The model is used to examine two case studies in which the introduction of an antibody (anti- γ H2AX-TAT) that targets a key component in the DSB repair pathway influences system behaviour. We investigate: (i) how the interaction between anti- γ H2AX-TAT and γ H2AX effects the kinetics of H2AX phosphorylation and DSB repair and (ii) model behaviour when the anti- γ H2AX antibody is labelled with Auger electron-emitting 111 In and can thus instigate additional DNA damage. This work supports the conclusion that DSB kinetics are largely unaffected by the introduction of the anti- γ H2AX antibody, a result that has been validated experimentally, and hence the hypothesis that the use of anti- γ H2AX antibody to quantify DSBs does not violate the image tracer principle. Moreover, it provides a novel model of DNA damage accumulation in the presence of Auger electron-emitting 111 In that is supported qualitatively by the available experimental data.


Brain ◽  
2019 ◽  
Vol 142 (8) ◽  
pp. 2352-2366 ◽  
Author(s):  
Guo-zhong Yi ◽  
Guanglong Huang ◽  
Manlan Guo ◽  
Xi’an Zhang ◽  
Hai Wang ◽  
...  

Abstract The acquisition of temozolomide resistance is a major clinical challenge for glioblastoma treatment. Chemoresistance in glioblastoma is largely attributed to repair of temozolomide-induced DNA lesions by O6-methylguanine-DNA methyltransferase (MGMT). However, some MGMT-deficient glioblastomas are still resistant to temozolomide, and the underlying molecular mechanisms remain unclear. We found that DYNC2H1 (DHC2) was expressed more in MGMT-deficient recurrent glioblastoma specimens and its expression strongly correlated to poor progression-free survival in MGMT promotor methylated glioblastoma patients. Furthermore, silencing DHC2, both in vitro and in vivo, enhanced temozolomide-induced DNA damage and significantly improved the efficiency of temozolomide treatment in MGMT-deficient glioblastoma. Using a combination of subcellular proteomics and in vitro analyses, we showed that DHC2 was involved in nuclear localization of the DNA repair proteins, namely XPC and CBX5, and knockdown of either XPC or CBX5 resulted in increased temozolomide-induced DNA damage. In summary, we identified the nuclear transportation of DNA repair proteins by DHC2 as a critical regulator of acquired temozolomide resistance in MGMT-deficient glioblastoma. Our study offers novel insights for improving therapeutic management of MGMT-deficient glioblastoma.


2018 ◽  
Vol 8 (1) ◽  
pp. 15 ◽  
Author(s):  
◽  
◽  

Glioblastoma is known to be one of the most lethal and untreatable human tumors. Surgery and radiotherapy in combination with classical alkylating agents such as temozolomide offer little hope to escape a poor prognosis. For these reasons, enormous efforts are currently devoted to refine in vivo and in vitro models with the specific goal of finding new molecular aberrant pathways, suitable to be targeted by a variety of therapeutic approaches, including novel pharmaceutical formulations and immunotherapy strategies. In this review, we will first discuss current molecular classification based on genomic and transcriptomic criteria. Also, the state of the art in current clinical practice for glioblastoma therapy in the light of the recent molecular classification, together with ongoing phases II and III clinical trials, will be described. Finally, new pharmaceutical formulations such as nanoparticles and viral vectors, together with new strategies entailing the use of monoclonal antibodies, vaccines and immunotherapy agents, such as checkpoint inhibitors, will also be discussed.


Author(s):  
Xiaodong Yang ◽  
Anne Steino ◽  
Jeffrey Bacha ◽  
Dennis Brown ◽  
Sabine Mueller

Despite decades of trials, the prognosis for diffuse intrinsic pontine gliomas (DIPG) remains dismal. DIPG is inoperable and standard treatment is radiation alone, as the addition of chemotherapeutic agents, such as temozolomide, have not improved survival. In addition to inherent chemoresistance, treatment of DIPG is impeded by an intact blood-brain barrier (BBB). VAL-083 is a structurally unique bi-functional DNA-targeting agent that readily crosses the BBB. VAL-083 forms interstrand DNA crosslinks at N7-guanine, resulting in DNA double-strand breaks (DSB), S/G2-phase cell-cycle arrest, and ultimately cancer cell death. We have previously demonstrated that VAL-083 is able to overcome temozolomide-resistance in vitro and in vivo, and that its cytotoxicity is independent of the DNA-repair enzyme O6-methylguanine DNA-methyltransferase (MGMT). MGMT is almost universally expressed in DIPG and its expression is strongly correlated with temozolomide-resistance. VAL-083’s distinct mechanism-of-action suggests the potential for combination with inhibitors of DNA DSB repair or S/G2 cell-cycle progression (e.g. Wee1 inhibitor AZD1775). Here, we investigated the effects of VAL-083 in combination with radiation, AZD1775 or irinotecan (topoisomerase inhibitor) in three DIPG cell-lines: SF10693 (H3.1), SF8628 (H3.3) and NEM157 (H3.3). VAL-083 showed activity at low uM-concentration in all three cell-lines. In addition, VAL-083 showed synergy with AZD1775 in all three cell-lines. Combined with its ability to cross the BBB, accumulate in brain tumor tissue and overcome MGMT-related chemoresistance, these results suggest VAL-083 as a potentially attractive treatment option for DIPG as single agent or in combination with AZD1775. Combination studies with radiation are ongoing and will be presented at the meeting.


2021 ◽  
Author(s):  
John Heath ◽  
Estelle Simo Cheyou ◽  
Steven Findlay ◽  
Vincent Luo ◽  
Edgar Pinedo Carpio ◽  
...  

The heterochromatin protein HP1 plays a central role in the maintenance of genome stability, in particular by promoting homologous recombination (HR)-mediated DNA repair. However, little is still known about how HP1 is controlled during this process. Here, we describe a novel function of the POGO transposable element derived with ZNF domain protein (POGZ) in the regulation of HP1 during the DNA damage response in vitro. POGZ depletion delays the resolution of DNA double-strand breaks (DSBs) and correlates with an increased sensitivity to different DNA damaging agents, including the clinically-relevant Cisplatin and Talazoparib. Mechanistically, POGZ promotes homology-directed DNA repair pathways by retaining the BRCA1/BARD1 complex at DSBs, in a HP1-dependent manner. In vivo CRISPR inactivation of Pogz is embryonic lethal and Pogz haplo-insufficiency (Pogz+/Δ) results in a developmental delay, a deficit in intellectual abilities, a hyperactive behaviour as well as a compromised humoral immune response in mice, recapitulating the main clinical features of the White Sutton syndrome (WHSUS). Importantly, Pogz+/Δ mice are radiosensitive and accumulate DSBs in diverse tissues, including the spleen and the brain. Altogether, our findings identify POGZ as an important player in homology-directed DNA repair both in vitro and in vivo, with clinical implications for the WHSUS.


2010 ◽  
Vol 207 (5) ◽  
pp. 983-997 ◽  
Author(s):  
Li Li ◽  
Marie-Jo Halaby ◽  
Anne Hakem ◽  
Renato Cardoso ◽  
Samah El Ghamrasni ◽  
...  

Signaling and repair of DNA double-strand breaks (DSBs) are critical for preventing immunodeficiency and cancer. These DNA breaks result from exogenous and endogenous DNA insults but are also programmed to occur during physiological processes such as meiosis and immunoglobulin heavy chain (IgH) class switch recombination (CSR). Recent studies reported that the E3 ligase RNF8 plays important roles in propagating DNA DSB signals and thereby facilitating the recruitment of various DNA damage response proteins, such as 53BP1 and BRCA1, to sites of damage. Using mouse models for Rnf8 mutation, we report that Rnf8 deficiency leads to impaired spermatogenesis and increased sensitivity to ionizing radiation both in vitro and in vivo. We also demonstrate the existence of alternative Rnf8-independent mechanisms that respond to irradiation and accounts for the partial recruitment of 53bp1 to sites of DNA damage in activated Rnf8−/− B cells. Remarkably, IgH CSR is impaired in a gene dose-dependent manner in Rnf8 mutant mice, revealing that these mice are immunodeficient. In addition, Rnf8−/− mice exhibit increased genomic instability and elevated risks for tumorigenesis indicating that Rnf8 is a novel tumor suppressor. These data unravel the in vivo pleiotropic effects of Rnf8.


Blood ◽  
2007 ◽  
Vol 110 (2) ◽  
pp. 709-718 ◽  
Author(s):  
Tanyel Kiziltepe ◽  
Teru Hideshima ◽  
Kenji Ishitsuka ◽  
Enrique M. Ocio ◽  
Noopur Raje ◽  
...  

Abstract Here we investigated the cytotoxicity of JS-K, a prodrug designed to release nitric oxide (NO•) following reaction with glutathione S-transferases, in multiple myeloma (MM). JS-K showed significant cytotoxicity in both conventional therapy-sensitive and -resistant MM cell lines, as well as patient-derived MM cells. JS-K induced apoptosis in MM cells, which was associated with PARP, caspase-8, and caspase-9 cleavage; increased Fas/CD95 expression; Mcl-1 cleavage; and Bcl-2 phosphorylation, as well as cytochrome c, apoptosis-inducing factor (AIF), and endonuclease G (EndoG) release. Moreover, JS-K overcame the survival advantages conferred by interleukin-6 (IL-6) and insulin-like growth factor 1 (IGF-1), or by adherence of MM cells to bone marrow stromal cells. Mechanistic studies revealed that JS-K–induced cytotoxicity was mediated via NO• in MM cells. Furthermore, JS-K induced DNA double-strand breaks (DSBs) and activated DNA damage responses, as evidenced by neutral comet assay, as well as H2AX, Chk2 and p53 phosphorylation. JS-K also activated c-Jun NH2-terminal kinase (JNK) in MM cells; conversely, inhibition of JNK markedly decreased JS-K–induced cytotoxicity. Importantly, bortezomib significantly enhanced JS-K–induced cytotoxicity. Finally, JS-K is well tolerated, inhibits tumor growth, and prolongs survival in a human MM xenograft mouse model. Taken together, these data provide the preclinical rationale for the clinical evaluation of JS-K to improve patient outcome in MM.


2018 ◽  
Vol 177 ◽  
pp. 06001
Author(s):  
R.A. Kozhina ◽  
V.N. Chausov ◽  
E.A. Kuzmina ◽  
A.V. Boreyko

One of the central problems of modern radiobiology is the study of DNA damage induction and repair mechanisms in central nervous system cells, in particular, in hippocampal cells. The study of the regularities of molecular damage formation and repair in the hippocampus cells is of special interest, because these cells, unlike most cells of the central nervous system (CNS), keep proliferative activity, i.e. ability to neurogenesis. Age-related changes in hippocampus play an important role, which could lead to radiosensitivity changes in neurons to the ionizing radiation exposure. Regularities in DNA double-strand breaks (DSB) induction and repair in different aged mice hippocampal cells in vivo and in vitro under the action of γ-rays 60Со were studied with DNA comet-assay. The obtained dose dependences of DNA DSB induction are linear both in vivo and in vitro. It is established that in young animals' cells, the degree of DNA damage is higher than in older animals. It is shown that repair kinetics is basically different for exposure in vivo and in vitro.


Sign in / Sign up

Export Citation Format

Share Document