scholarly journals Comparison of Quantification of Target-Specific Accumulation of [18F]F-siPSMA-14 in the HET-CAM Model and in Mice Using PET/MRI

Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4007
Author(s):  
Jessica Löffler ◽  
Carmen Hamp ◽  
Ellen Scheidhauer ◽  
Daniel Di Carlo ◽  
Christoph Solbach ◽  
...  

Assessment of biodistribution and specific tumor accumulation is essential for the development of new radiopharmaceuticals and requires animal experiments. The HET-CAM (hens-egg test—chorioallantoic membrane) model can be used in combination with the non-invasive imaging modalities PET and MRI for pre-selection during radiopharmaceutical development to reduce the number of animal experiments required. Critical to the acceptance of this model is the demonstration of the quantifiability and reproducibility of these data compared to the standard animal model. Tumor accumulation and biodistribution of the PSMA-specific radiotracer [18F]F-siPSMA-14 was analyzed in the chick embryo and in an immunodeficient mouse model. Evaluation was based on MRI and PET data in both models. γ-counter measurements and histopathological analyses complemented these data. PSMA-specific accumulation of [18F]F-siPSMA-14 was successfully demonstrated in the HET-CAM model, similar to the results obtained by mouse model studies. The combination of MR and PET imaging allowed precise quantification of peptide accumulation, initial assessment of biodistribution, and accurate determination of tumor volume. Thus, the use of the HET-CAM model is suitable for the pre-selection of new radiopharmaceuticals and potentially reduces animal testing in line with the 3Rs principles of animal welfare.

2019 ◽  
Vol 2 (3) ◽  
pp. 140-151 ◽  
Author(s):  
Junhui Hu ◽  
Moe Ishihara ◽  
Arnold I Chin ◽  
Lily Wu

Abstract Cancer of the urological system commonly occurs in the kidney, bladder, and prostate gland. The clear cell subtype of renal cell carcinoma (ccRCC) constitutes the great majority of kidney cancer. Metastatic ccRCC portends a very poor outcome with no effective treatment available. Prostate cancer is the most common cancer in males in the US. Despite recent advances in selective kinase inhibitors and immunotherapies, the rate of developing new treatment from bench to bedside is slow. A time-consuming step is at the animal drug testing stage, in which the mouse model is the gold standard. In the pursuit to streamline the in vivo cancer biology research and drug development, we explored the feasibility of the chicken chorioallantoic membrane (CAM) model to establish xenografts. The CAM model greatly shortens the time of tumor growth and lowers the cost comparing to immunocompromised mice. We generated CAM xenografts from ccRCC, bladder and prostate cancer, with established cancer cell lines and freshly isolated patient-derived tissues, either as primary tumor cells or small pieces of tumors. The successful CAM engraftment rate from the different tumor sources is 70% or above. Using our previously established metastatic ccRCC mouse model, we showed that the CAM xenograft maintains the same tumor growth pattern and metastatic behavior as observed in mice. Taken together, CAM can serve as a valuable platform to establish new patient-derived xenografts (PDXs) to study tumor biology, thus accelerating the development of individualized treatment to halt the deadly metastatic stage of cancer.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1248
Author(s):  
Gordon Winter ◽  
Andrea B. F. Koch ◽  
Jessica Löffler ◽  
Mika Lindén ◽  
Christoph Solbach ◽  
...  

The validation of novel target-specific radioligands requires animal experiments mostly using mice with xenografts. A pre-selection based on a simpler in vivo model would allow to reduce the number of animal experiments, in accordance with the 3Rs principles (reduction, replacement, refinement). In this respect, the chick embryo or hen’s egg test–chorioallantoic membrane (HET-CAM) model is of special interest, as it is not considered an animal until day 17. Thus, we evaluated the feasibility of quantitative analysis of target-specific radiotracer accumulation in xenografts using the HET-CAM model and combined positron emission tomography (PET) and magnetic resonance imaging (MRI). For proof-of-principle we used established prostate-specific membrane antigen (PSMA)-positive and PSMA-negative prostate cancer xenografts and the clinically widely used PSMA-specific PET-tracer [68Ga]Ga-PSMA-11. Tracer accumulation was quantified by PET and tumor volumes measured with MRI (n = 42). Moreover, gamma-counter analysis of radiotracer accumulation was done ex-vivo. A three- to five-fold higher ligand accumulation in the PSMA-positive tumors compared to the PSMA-negative tumors was demonstrated. This proof-of-principle study shows the general feasibility of the HET-CAM xenograft model for target-specific imaging with PET and MRI. The ultimate value for characterization of novel target-specific radioligands now has to be validated in comparison to mouse xenograft experiments.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Soo Bin Kwon ◽  
Jason Ernst

AbstractIdentifying genomic regions with functional genomic properties that are conserved between human and mouse is an important challenge in the context of mouse model studies. To address this, we develop a method to learn a score of evidence of conservation at the functional genomics level by integrating information from a compendium of epigenomic, transcription factor binding, and transcriptomic data from human and mouse. The method, Learning Evidence of Conservation from Integrated Functional genomic annotations (LECIF), trains neural networks to generate this score for the human and mouse genomes. The resulting LECIF score highlights human and mouse regions with shared functional genomic properties and captures correspondence of biologically similar human and mouse annotations. Analysis with independent datasets shows the score also highlights loci associated with similar phenotypes in both species. LECIF will be a resource for mouse model studies by identifying loci whose functional genomic properties are likely conserved.


2021 ◽  
Vol 28 ◽  
Author(s):  
Ana Isabel Fraguas-Sánchez ◽  
Cristina Martín-Sabroso ◽  
Ana Isabel Torres-Suárez

Background: The chick chorioallantoic membrane (CAM) model has attracted a great deal of interest in pharmaceutical and biological research as an alternative or complementary in vivo assay to animal models. Traditionally, CAM assay has been widely used to perform some toxicological studies, specifically to evaluate the skin, ocular and embryo toxicity of new drugs and formulations, and perform angiogenesis studies. Due to the possibility to generate the tumors onto the CAM, this model has also become an excellent strategy to evaluate the metastatic potential of different tumours and test the efficacy of novel anticancer therapies in vivo. Moreover, in the recent years, its use has considerably grown in other research areas, including the evaluation of new anti-infective agents, the development of biodistribution studies and tissue engineering research. Objectives: This manuscript provides a critical overview of the use of CAM model in pharmaceutical and biological research, especially to test the toxicity of new drugs and formulations and the biodistribution and the efficacy of novel anticancer and anti-infective therapies, analyzing its advantages and disadvantages compared to animal models. Conclusion: The chick chorioallantoic membrane model shows great utility in several research areas, such as cancer, toxicology, biodistribution studies and anti-infective therapies. In fact, it has become an intermediate stage between in vitro experiments and animal studies, and, in the case of toxicological studies (skin and ocular toxicity), has even replaced the animal models.


2001 ◽  
Author(s):  
Ilana Teruszkin Balassiano ◽  
Sheila Alves de Paulo ◽  
Nathalie Henriques Silva ◽  
Maulori Curie Cabral ◽  
Maria da Gloria da Costa Carvalho

2020 ◽  
Vol 21 (3) ◽  
pp. 1106 ◽  
Author(s):  
Sruthi V. Hindupur ◽  
Sebastian C. Schmid ◽  
Jana Annika Koch ◽  
Ahmed Youssef ◽  
Eva-Maria Baur ◽  
...  

The JAK-STAT signalling pathway regulates cellular processes like cell division, cell death and immune regulation. Dysregulation has been identified in solid tumours and STAT3 activation is a marker for poor outcome. The aim of this study was to explore potential therapeutic strategies by targeting this pathway in bladder cancer (BC). High STAT3 expression was detected in 51.3% from 149 patient specimens with invasive bladder cancer by immunohistochemistry. Protein expression of JAK, STAT and downstream targets were confirmed in 10 cell lines. Effects of the JAK inhibitors Ruxolitinib and BSK-805, and STAT3/5 inhibitors Stattic, Nifuroxazide and SH-4-54 were analysed by cell viability assays, immunoblotting, apoptosis and cell cycle progression. Treatment with STAT3/5 but not JAK1/2 inhibitors reduced survival, levels of phosphorylated STAT3 and Cyclin-D1 and increased apoptosis. Tumour xenografts, using the chicken chorioallantoic membrane (CAM) model responded to Stattic monotherapy. Combination of Stattic with Cisplatin, Docetaxel, Gemcitabine, Paclitaxel and CDK4/6 inhibitors showed additive effects. The combination of Stattic with the oncolytic adenovirus XVir-N-31 increased viral replication and cell lysis. Our results provide evidence that inhibitors against STAT3/5 are promising as novel mono- and combination therapy in bladder cancer.


2017 ◽  
Vol 41 (4) ◽  
pp. 1572-1583 ◽  
Author(s):  
Zengfa Huang ◽  
Cheng Cheng ◽  
Jing Wang ◽  
Hui Wei ◽  
Xianzhe Liu ◽  
...  

Background/Aims: This experimental study aimed to evaluate the effect of low-concentration phosphoric acid on the surface structure of cortical allografts. Methods: Allogenic cortical bones were obtained from femurs and tibias of New Zealand white rabbits. The bones were modified by treatment with various concentrations of phosphoric acid (10%, 20% or 30%) for 10, 30 or 60 minutes, then evaluated by the following methods: 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and LIVE/DEAD assay, alkaline phosphatase (ALP) assay, biomechanical properties testing, contact angle detection, quantitative real-time polymerase chain reaction (Q-PCR), western blotting and scanning electron microscopy (SEM). Results: Compared with the other groups, the group modified with 10% H3PO4 for 10 minutes had lower cytotoxicity according to MTT and LIVE/DEAD assays, higher hydrophilicity in the contact angle detection test and greater stability in the biomechanical properties test. Moreover, an up-regulation of osteopontin (OPN) in bones modified with 10% H3PO4 was observed by Q-PCR and western blotting. In addition, ALP assay and SEM showed that surface porosity and osteoinductivity were increased in the group modified with 10% H3PO4. Conclusions: Low-concentration phosphoric acid may be a potential method for surface modification of cortical allografts. Further animal experiments and animal infection model studies are required to validate the efficacy of surface-modified cortical allografts to repair large segmental bone defects.


2021 ◽  
Vol 22 (20) ◽  
pp. 11036
Author(s):  
Nouf N. Mahmoud ◽  
Zain Zaki Zakaria ◽  
Hadeel Kheraldine ◽  
Ishita Gupta ◽  
Semir Vranic ◽  
...  

Gold nanorods have been implicated in several biomedical applications. Herein, the effect of two surface-modified gold nanorods on the early stages of embryogenesis and angiogenesis was investigated using avian embryos at three days and their chorioallantoic membrane (CAM) at five days of incubation. We found that gold nanorods (GNR) modified with PEGylated phospholipid moiety show a high mortality rate in embryos after four days of exposure compared to GNR modified with PEGylated cholesterol moiety. Meanwhile, our data revealed that surface modified-GNR significantly inhibit the formation of new blood vessels in the treated CAM model after 48 h of exposure. Moreover, we report that surface-modified GNR significantly deregulate the expression of several genes implicated in cell proliferation, invasion, apoptosis, cellular energy metabolism, and angiogenesis. On the other hand, our data point out that GNR treatments can modulate the expression patterns of JNK1/2/3, NF-KB/p38, and MAPK, which could be the main molecular pathways of the nanorods in our experimental models.


2020 ◽  
Vol 8 ◽  
Author(s):  
Julia Rogal ◽  
Madalena Cipriano ◽  
Peter Loskill

Have you ever pictured yourself as a LEGO®-mini-figure? That is pretty cool, right?! But now, instead of picturing yourself as an astronaut, superhero, or elf-figure, try to imagine your own body being miniature and built from LEGO®–one brick for each of your organs. Sound weird? Let us explain why a mini LEGO®-version of you could be extremely useful and could become reality in the future. Such technology might help end testing that uses laboratory animals and help your doctors understand your disease. We use people’s cells and small plastic housings to build mini-organs the size of small LEGO®-bricks, such as a beating heart or energy-storing fat tissue. Similar to playing LEGO®, we can also connect different organ-bricks and study how they talk and work with each other. In this article, we will tell you how this all works and why it is so much better than animal experiments.


Author(s):  
Ekta Tomar ◽  
Sonali Wairagade ◽  
Arachana Gharote ◽  
Ranjit S. Ambad ◽  
Dhruba Hari Chandi

Background: Mandur Bhasma is a herbo-mineral compound. It is prepared by Putapaka method. It is described as Raktasanjanan. In the current study, Mandur Bhasma was prepared with a standardized method w.s.r to Rasatarangini and an experimental study was done to observe the Angiogenic property of Mandur Bhasma. The current study will analyze angiogenic potential of Mandur Bhasma using chick CAM model. This research is intended to study the possible role of Mandur Bhasma on angiogenesis and establishing properties of Mandur Bhasma as an angiogenic by newer means. The experimental study inside the egg shell will be carried out on a membrane known as “chorioallantoic membrane”. Objectives: To Prepare Mandur Bhasma Physicochemical and Analytical study of Mandur Bhasma To verify the angiogenic potential of Mandur bhasma using the chicken chorioallantoic membrane (CAM) model. To compare Angeogenic potential of Mandur bhasma with standard drug progesterone Methodology: Relevant classical literature regarding Mandur will be reviewed and the data will be collected. Mandur Shodhan with Gomutra and Mandur Maran with Triphala decoction will be done. Analytical Study like Organoleptic Test for Rasa, Gandha, Varna, Sparsha, Physicochemical Tests and other analytical test like ICP-AES /ICPMS, XRD structure of Bhasma, EDAX-NANO Particle Size will be done. Expected Results: Changes will be observed in objective outcomes. Conclusion: Conclusion will be drawn by suitably analyzing data.


Sign in / Sign up

Export Citation Format

Share Document