scholarly journals Lamin A and Prelamin A Counteract Migration of Osteosarcoma Cells

Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 774 ◽  
Author(s):  
Camilla Evangelisti ◽  
Francesca Paganelli ◽  
Gaia Giuntini ◽  
Elisabetta Mattioli ◽  
Alessandra Cappellini ◽  
...  

A type lamins are fundamental components of the nuclear lamina. Changes in lamin A expression correlate with malignant transformation in several cancers. However, the role of lamin A has not been explored in osteosarcoma (OS). Here, we wanted to investigate the role of lamin A in normal osteoblasts (OBs) and OS cells. Thus, we studied the expression of lamin A/C in OS cells compared to OBs and evaluated the effects of lamin A overexpression in OS cell lines. We show that, while lamin A expression increases during osteoblast differentiation, all examined OS cell lines express lower lamin A levels relative to differentiated OBs. The condition of low LMNA expression confers to OS cells a significant increase in migration potential, while overexpression of lamin A reduces migration ability of OS cells. Moreover, overexpression of unprocessable prelamin A also reduces cell migration. In agreement with the latter finding, OS cells which accumulate the highest prelamin A levels upon inhibition of lamin A maturation by statins, had significantly reduced migration ability. Importantly, OS cells subjected to statin treatment underwent apoptotic cell death in a RAS-independent, lamin A-dependent manner. Our results show that pro-apoptotic effects of statins and statin inhibitory effect on OS cell migration are comparable to those obtained by prelamin A accumulation and further suggest that modulation of lamin A expression and post-translational processing can be a tool to decrease migration potential in OS cells.

2009 ◽  
Vol 187 (7) ◽  
pp. 1101-1116 ◽  
Author(s):  
Chiara Francavilla ◽  
Paola Cattaneo ◽  
Vladimir Berezin ◽  
Elisabeth Bock ◽  
Diletta Ami ◽  
...  

Neural cell adhesion molecule (NCAM) associates with fibroblast growth factor (FGF) receptor-1 (FGFR1). However, the biological significance of this interaction remains largely elusive. In this study, we show that NCAM induces a specific, FGFR1-mediated cellular response that is remarkably different from that elicited by FGF-2. In contrast to FGF-induced degradation of endocytic FGFR1, NCAM promotes the stabilization of the receptor, which is recycled to the cell surface in a Rab11- and Src-dependent manner. In turn, FGFR1 recycling is required for NCAM-induced sustained activation of various effectors. Furthermore, NCAM, but not FGF-2, promotes cell migration, and this response depends on FGFR1 recycling and sustained Src activation. Our results implicate NCAM as a nonconventional ligand for FGFR1 that exerts a peculiar control on the intracellular trafficking of the receptor, resulting in a specific cellular response. Besides introducing a further level of complexity in the regulation of FGFR1 function, our findings highlight the link of FGFR recycling with sustained signaling and cell migration and the critical role of these events in dictating the cellular response evoked by receptor activation.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Zahra Tayarani-Najaran ◽  
Seyed Ahmad Emami ◽  
Javad Asili ◽  
Alireza Mirzaei ◽  
Seyed Hadi Mousavi

TheScutellariaspecies (Lamiaceae) is used as a source of flavonoids to treat a variety of diseases in traditional medicine. In spite of many reports about the cytotoxic and antitumor effects of some species of this genus, anticancer researches on one of the Iranian speciesS. litwinowiihave not yet been conducted.The cytotoxic properties of total methanol extract ofS. litwinowiiand its fractions were investigated on different cancer cell lines including AGS, HeLa, MCF-7, PC12 and NIH 3T3. Meanwhile, the role of apoptosis in this toxicity was explored. The cells were cultured in DMEM medium and incubated with different concentrations of herb plant extracts. Cell viability was quantitated by MTT assay. Apoptotic cells were determined using propidium iodide staining of DNA fragmentation by flow cytometry (sub-G1 peak).Scutellaria litwinowiiinhibited the growth of malignant cells in a dose-dependent manner. Among solvent fractions ofS. litwinowii, the methylene chloride fraction was found to be more toxic compared to other fractions. The IC50values of this fraction against AGS, HeLa, MCF-7 and PC12 cell lines after 24 h were determined, 121.2 ± 3.1, 40.9 ± 2.5, 115.9 ± 3.5 and 64.5 ± 3.4μg/ml, respectively.Scutellaria litwinowiiinduced a sub-G1 peak in the flow cytometry histogram of treated cells compared to control cells indicating that apoptotic cell death is involved inS. litwinowiitoxicity.Scutellaria litwinowiiexerts cytotoxic and proapototic effects in a variety of malignant cell lines and could be considered as a potential chemotherapeutic agent in cancer treatment.


1981 ◽  
Author(s):  
J P Cazenave ◽  
A Beretz ◽  
A Stierlé ◽  
R Anton

Injury to the endothelium (END) and subsequent platelet (PLAT)interactions with the subEND are important steps in thrombosis and atherosclerosis. Thus,drugs that protect the END from injury and also inhibit PLAT function are of interest. It has been shown that some flavonoids(FLA), a group of compounds found in plants, prevent END desquamation in vivo, inhibit cyclic nucleotide phosphodiesterases(PDE)and inhibit PLAT function. We have studied the structure-activity relationships of 13 purified FLA on aggregation and secretion of 14c-5HT of prelabeled washed human PLAT induced by ADP, collagen(COLL) and thrombin(THR). All the FLA were inhibitors of the 3 agents tested. Quercetin(Q), was the second best after fisetin. It inhibited secretion and aggregation with I50 of 330µM against 0.1 U/ML.THR, 102µM against 5µM ADP and 40 µM against COLL. This inhibitory effect is in the range of that of other PDE inhibitors like dipyridamole or 3-isobutyl-l- methylxanthine. The aggregation induced by ADP, COLL and THR is at least mediated by 3 mechanisms that can be inhibited by increasing cAMP levels. We next investigated if Q, which is a PDE inhibitor of bovine aortic microsomes,raises PLAT cAMP levels. cAMP was measured by a protein-binding method. ADP- induced aggregation(5µM) was inhibited by PGI2 (0.1 and 0.5 nM) . Inhibition was further potentiated(l.7 and 3.3 times) by lOµM Q, which alone has no effect on aggregation. The basal level of cAMP(2.2 pmol/108PLAT) was not modified by Q (50 to 500µM). Using these concentrations of Q,the rise in cAMP caused by PGI2(0.1 and 0.5nM) was potentiated in a dose dependent manner. Q potentiated the effect of PGI2 on the maximum level of cAMP and retarded its breakdown. Thus Q and possibly other FLA could inhibit the interaction of PLAT with the components of the vessel wall by preventing END damage and by inhibiting PLAT function through a rise in cAMP secondary to PDE inhibition and potentiation of the effect of vascular PGI2 on PLAT adenylate cyclase.


2009 ◽  
Vol 3 (2) ◽  
pp. 40-47
Author(s):  
Zainab Y. Mohammed ◽  
Essam F. Al-Jumaily ◽  
Nahi Y. Yaseen

The partial purified resveratrol was obtained from the skin of black grape fruit cultivated in Iraq using 80% ethanolic solution, then an acid hydrolysis with 10% HCl solution for (10–30) min at 60Cº was carried out. The aglycone moiety was taken with an organic solvent (chloroform), then using an open glass column packed with silica gelG 60 as a stationary phase and a mobile phase of; benzene: methanol: actic acid (20:4:1). The study utilized an in vitro evaluation for the cytotoxic effect of the partially purified resveratrol on some cell lines including, the murine mammary adenocarcinoma (Ahmed –Mohammed –Nahi–2003 -AMN -3) cell line; the human laryngeal carcinoma (Hep -2) cell line and the Rat Embryo Fibroblast (REF) cell line at different concentrations and different exposure time of treatment. The partial purified resveratrol extract concentrations ranging (7.8–4000) µg/ml in a two fold serial dilutions were used to treat the three types of cell lines for 48 and 72 hours intervals. AMN-3 cell lines showed highest sensitivity toward the cytotoxic effect of the paritial purified resveratrol than other cell lines after 48 hours in a dose dependent manner. While Hep-2 cell line showed novel behavior, the lowest concentration of cell treatment gave the most significant (P< 0.01) inhibitory effect. Only the highest concentration gave significant inhibitory effect (P< 0.01) with the transformed Ref cell line.


2015 ◽  
Vol 23 (1) ◽  
pp. 35-45 ◽  
Author(s):  
Jan Kroon ◽  
Martin Puhr ◽  
Jeroen T Buijs ◽  
Geertje van der Horst ◽  
Daniëlle M Hemmer ◽  
...  

Resistance to docetaxel is a major clinical problem in advanced prostate cancer (PCa). Although glucocorticoids (GCs) are frequently used in combination with docetaxel, it is unclear to what extent GCs and their receptor, the glucocorticoid receptor (GR), contribute to the chemotherapy resistance. In this study, we aim to elucidate the role of the GR in docetaxel-resistant PCa in order to improve the current PCa therapies. GR expression was analyzed in a tissue microarray of primary PCa specimens from chemonaive and docetaxel-treated patients, and in cultured PCa cell lines with an acquired docetaxel resistance (PC3-DR, DU145-DR, and 22Rv1-DR). We found a robust overexpression of the GR in primary PCa from docetaxel-treated patients and enhanced GR levels in cultured docetaxel-resistant human PCa cells, indicating a key role of the GR in docetaxel resistance. The capability of the GR antagonists (RU-486 and cyproterone acetate) to revert docetaxel resistance was investigated and revealed significant resensitization of docetaxel-resistant PCa cells for docetaxel treatment in a dose- and time-dependent manner, in which a complete restoration of docetaxel sensitivity was achieved in both androgen receptor (AR)-negative and AR-positive cell lines. Mechanistically, we demonstrated down-regulation of Bcl-xL and Bcl-2 upon GR antagonism, thereby defining potential treatment targets. In conclusion, we describe the involvement of the GR in the acquisition of docetaxel resistance in human PCa. Therapeutic targeting of the GR effectively resensitizes docetaxel-resistant PCa cells. These findings warrant further investigation of the clinical utility of the GR antagonists in the management of patients with advanced and docetaxel-resistant PCa.


2006 ◽  
Vol 203 (1) ◽  
pp. 189-201 ◽  
Author(s):  
Ronit Vogt Sionov ◽  
Orly Cohen ◽  
Shlomit Kfir ◽  
Yael Zilberman ◽  
Eitan Yefenof

The mechanisms by which glucocorticoid receptor (GR) mediates glucocorticoid (GC)-induced apoptosis are unknown. We studied the role of mitochondrial GR in this process. Dexamethasone induces GR translocation to the mitochondria in GC-sensitive, but not in GC-resistant, T cell lines. In contrast, nuclear GR translocation occurs in all cell types. Thymic epithelial cells, which cause apoptosis of the PD1.6 T cell line in a GR-dependent manner, induce GR translocation to the mitochondria, but not to the nucleus, suggesting a role for mitochondrial GR in eliciting apoptosis. This hypothesis is corroborated by the finding that a GR variant exclusively expressed in the mitochondria elicits apoptosis of several cancer cell lines. A putative mitochondrial localization signal was defined to amino acids 558–580 of human GR, which lies within the NH2-terminal part of the ligand-binding domain. Altogether, our data show that mitochondrial and nuclear translocations of GR are differentially regulated, and that mitochondrial GR translocation correlates with susceptibility to GC-induced apoptosis.


Antioxidants ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 319 ◽  
Author(s):  
Sara Franceschelli ◽  
Paola Lanuti ◽  
Alessio Ferrone ◽  
Daniela Maria Pia Gatta ◽  
Lorenza Speranza ◽  
...  

The L-3,4-dihydroxyphenylalanine (LD) is the gold standard drug currently used to manage Parkinson’s disease (PD) and to control its symptoms. However, LD could cause disease neurotoxicity due to the generation of pro-oxidant intermediates deriving from its autoxidation. In order to overcome this limitation, we have conjugated LD to the natural antioxidant glutathione (GSH) to form a codrug (GSH-LD). Here we investigated the effect of GSH-LD on H2O2-induced cellular toxicity in undifferentiated and differentiated lymphoma U-937 and dopaminergic neuroblastoma SH-SY5Y cell lines, used respectively as models to study the involvement of macrophages/microglia and dopaminergic neurons in PD. We analyzed the effect of GSH-LD on apoptosis and cellular oxidative stress, both considered strategic targets for the prevention and treatment of neurodegenerative diseases. Compared to LD and GSH, GSH-LD had a stronger effect in preventing hydrogen peroxide (H2O2) induced apoptosis in both cell lines. Moreover, GSH-LD was able to preserve cell viability, cellular redox status, gluthation metabolism and prevent reactive oxygen species (ROS) formation, in a phosphinositide 3-kinase (PI3K)/kinase B (Akt)-dependent manner, in a neurotoxicity cellular model. Our findings indicate that the GSH-LD codrug offers advantages deriving from the additive effect of LD and GSH and it could represent a promising candidate for PD treatment.


Blood ◽  
1992 ◽  
Vol 79 (10) ◽  
pp. 2708-2716 ◽  
Author(s):  
M Arsura ◽  
M Introna ◽  
F Passerini ◽  
A Mantovani ◽  
J Golay

Abstract The B-myb gene is highly homologous to the c-myb protooncogene in several domains and also shares some of the functions of c-myb in that it can act as a transcriptional activator. In addition, the expression of both the B-myb and c-myb genes correlates with proliferation of normal hematopoietic cells. We investigated more directly the role of B- myb in proliferation of hematopoietic cell lines using B-myb-specific antisense oligonucleotides. We showed that several anti-B-myb oligonucleotides, complementary to distinct regions of the gene, inhibit significantly and in a dose-dependent manner the proliferation of all myeloid or lymphoid cell lines tested. This block in proliferation was not accompanied by detectable differentiation of U937 or HL60 cells to macrophages or granulocytes either spontaneously or after exposure to chemical agents. These data suggest that the B-myb gene, like c-myb, is necessary for hematopoietic cell proliferation.


Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 345
Author(s):  
Xi-Feng Jin ◽  
Gerald Spöttl ◽  
Julian Maurer ◽  
Svenja Nölting ◽  
Christoph Josef Auernhammer

Background and aims: Inhibition of Wnt/β-catenin signaling by specific inhibitors is currently being investigated as an antitumoral strategy for various cancers. The role of Wnt/β-catenin signaling in neuroendocrine tumors still needs to be further investigated. Methods: This study investigated the antitumor activity of the porcupine (PORCN) inhibitor WNT974 and the β-catenin inhibitor PRI-724 in human neuroendocrine tumor (NET) cell lines BON1, QGP-1, and NCI-H727 in vitro. NET cells were treated with WNT974, PRI-724, or small interfering ribonucleic acids against β-catenin, and subsequent analyses included cell viability assays, flow cytometric cell cycle analysis, caspase3/7 assays and Western blot analysis. Results: Treatment of NET cells with WNT974 significantly reduced NET cell viability in a dose- and time-dependent manner by inducing NET cell cycle arrest at the G1 and G2/M phases without inducing apoptosis. WNT974 primarily blocked Wnt/β-catenin signaling by the dose- and time-dependent downregulation of low-density lipoprotein receptor-related protein 6 (LRP6) phosphorylation and non-phosphorylated β-catenin and total β-catenin, as well as the genes targeting the latter (c-Myc and cyclinD1). Furthermore, the WNT974-induced reduction of NET cell viability occurred through the inhibition of GSK-3-dependent or independent signaling (including pAKT/mTOR, pEGFR and pIGFR signaling). Similarly, treatment of NET cells with the β-catenin inhibitor PRI-724 caused significant growth inhibition, while the knockdown of β-catenin expression by siRNA reduced NET tumor cell viability of BON1 cells but not of NCI-H727 cells. Conclusions: The PORCN inhibitor WNT974 possesses antitumor properties in NET cell lines by inhibiting Wnt and related signaling. In addition, the β-catenin inhibitor PRI-724 possesses antitumor properties in NET cell lines. Future studies are needed to determine the role of Wnt/β-catenin signaling in NET as a potential therapeutic target.


1984 ◽  
Vol 246 (3) ◽  
pp. C301-C307 ◽  
Author(s):  
R. J. Schimmel ◽  
L. McCarthy

The action of endogeneous adenosine on isolated hamster brown adipocytes was examined. Adenosine production from brown adipocytes was measured after labeling of the intracellular nucleotide pool with [3H]adenine. Accumulation of [3H]adenosine in the incubation medium was maximum after 5 min of incubation and was still present after 20 min. When adenosine accumulation was prevented by addition of adenosine deaminase, the stimulatory effects of isoproterenol on oxygen uptake, lipolysis, and adenosine 3',5'-cyclic monophosphate (cAMP) generation were enhanced. However, basal rates of lipolysis and oxygen consumption and levels of cAMP were not affected on addition of adenosine deaminase. A similar potentiation of isoproterenol responses was produced by the adenosine receptor antagonist, 3-isobutyl-1-methylxanthine, present at a concentration (10 microM) which did not change basal levels of respiration or lipolysis. Addition of the adenosine analogue 2-chloroadenosine antagonized isoproterenol-stimulated respiration and lipolysis and prevented potentiation of isoproterenol responses with 3-isobutyl-1-methylxanthine. To localize the site of adenosine action, activity of adenylate cyclase in membrane preparations from brown adipocytes was measured. Isoproterenol-stimulated adenylate cyclase activity was partially inhibited by 2-chloroadenosine in a GTP-dependent manner. Addition of Na+ enhanced the inhibitory effect of 2-chloroadenosine, and 3-isobutyl-1-methylxanthine blocked it. The calculated 50% effective dose for 2-chloroadenosine inhibition was between 10 and 15 nM. These data suggest that adenosine produced by brown adipocytes is an endogenous regulator of respiration in these cells acting at the level of the adenylate cyclase enzyme.


Sign in / Sign up

Export Citation Format

Share Document