scholarly journals Dual Nanofibrous Bioactive Coatings on TiZr Implants

Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 526
Author(s):  
Mariana Prodana ◽  
Claudiu-Eduard Nistor ◽  
Andrei Bogdan Stoian ◽  
Daniela Ionita ◽  
Cristian Burnei

The objective of this research was to obtain a dual coating with antimicrobial properties on TiZr implants. The metallic surfaces were modified with two biopolymers (poly(lactic acid) and polycaprolactone), the first deposited by dip coating and the second by electrospinning, in order to create a nanofibers type of coating with antibacterial and bioactive effect. The surface characteristics of the obtained bioactive coatings were evaluated by Fourier Transformed Infrared Spectroscopy, by scanning electron microscopy and by contact angle measurements. The electrochemical characterization of the coatings was performed in simulated body fluid. The metallic ion release from the coated implant materials was measured by inductively coupled plasma mass spectrometry. The in vitro antimicrobial properties of the coatings were studied using agar disc diffusion method and percentage inhibition of growth method for two bacterial strains—S. aureus and E. coli. The presence of silver nanoparticles presented high inhibition zone against gram negative bacteria like E. coli. Cell viability of MC3T3-E1 osteoblasts and cytoskeleton morphology, were tested in vitro for the biological evaluation. The results on in vitro cell response indicated good cell membrane integrity and viability for such nanofibrous bioactive coatings compared to the control substrate. These surface architectures design on implant materials holds promise for biomedical applications, presenting good antimicrobial properties and promote cell adhesion and proliferation.

2018 ◽  
Vol 16 (2) ◽  
pp. 147-157 ◽  
Author(s):  
Wilfred O Obonga ◽  
Philip F Uzor ◽  
Emmanuel O Ekwealor ◽  
Sampson C Nwabuko

The present study was aimed at a comparative study of the phytoconstituents, antioxidant and antimicrobial properties of four medicinal plants, Ficus capensis, Aristolochia ringens, Albizia zygia and Lannea welwitschii. The leaf of F. capensis and stem bark of A. ringens, A. zygia and L. welwitschii were extracted using methanol. Phytochemical analysis was done spectrophotometrically. Three in vitro antioxidant tests-hydrogen peroxide (H2O2), nitric oxide (NO) and 2, 2-diphenyl-1-picrylhydroxyl (DPPH) scavenging models were employed. Antimicrobial test was done by agar diffusion method against E. coli, Staphylococcus aureus, Klebsiela pneumonia, Bacillus subtilis, Pseudomonas aeruginosa, Salmonella typhi, Candida albicans and Aspergittus spp. Phytochemical analysis revealed that the most abundant phytoconstituents were flavonoids (F. capensis and A. zygia), reducing sugar, terpenoids, alkaloids and tannins. In the antioxidant models, A. zygia was found to produce the least IC50 in two of the models (NO and DPPH). Results of the antimicrobial tests showed that A. zygia showed a broader spectrum of activity than other plants. This study has shown that these plants possess antioxidant and antimicrobial activities which further justify their usage in traditional medicines. A. zygia featured prominently in these activities. Also flavonoids could be responsible for the bioactivities of these plants.Dhaka Univ. J. Pharm. Sci. 16(2): 147-157, 2017 (December)


2021 ◽  
Vol 18 ◽  
Author(s):  
Khalida Bouarroudj-Hamici ◽  
Soraya Mettouchi ◽  
Lynda Medjkouh-Rezzak ◽  
Romain Larbat ◽  
Abderezak Tamendjari

Background: The olive tree (Olea europaea L.), the most widespread plant species in the Mediterranean basin, includes two forms: cultivated (var Europaea) and wild (var Sylvestris). Wild olive trees or oleasters cover large areas in Algeria. It has been shown that oil from oleaster has a higher content of phenolic compounds, which could have antimicrobial properties. Objective:: The objective of this study was to assess the antibacterial activity of phenolic extracts from four Algerian oleaster oils and an extra virgin olive oil (EVOO) from Chemlal variety. Methods: Phenolic compounds were determined by UHPLC-MS. Antibacterial activity was tested against six referenced human enteropathogenic bacteria by the agar disc diffusion method by measuring the diameters of the zone of inhibition. Results: The results revealed a similarity between the phenolic composition of oleasters 1 and 3 and between oleaster 4 and EVOO; however, the phenolic composition of oleaster 2 that the poorer was markedly different with a higher content of free phenolic alcohols and lower in secoiridoids.


2020 ◽  
Vol 18 ◽  
Author(s):  
Yogesh Murti

Abstract: Flavonoids are among the most abundant plant secondary metabolites and have been shown to have natural abilities as microbial deterrents and anti-infection agents in plants. Naringenin as one of the flavonoids and its derivatives have been reported to exhibit antimicrobial activity. The aim of the study was to evaluate synthesized novel naringenin derivatives (ND-1 to ND-12) substituted at 3-position with bulky substituent by using the grinding technique (Claisen-Schmidt reaction) as antimicrobial agents. Synthesized naringenin derivatives were evaluated for in-vitro antimicrobial activity by "Agar disc diffusion method". Novel naringenin derivatives showed mild to moderate antimicrobial activity with respect to standard drugs against two gram-positive, two gram-negative bacteria and two fungal strains. The substitution of naringenin derivatives at position 3 with substituted phenyl rings showed variation in activity as chloro, nitro and hydroxyl-substituted phenyl ring showed potent activity while methoxy substituted phenyl ring impede the activity. In conclusion, on the basis of the above findings, the substituted naringenin scaffolds may be selected as a skeleton for the development of flavonoid structurally-related compounds having antimicrobial activity


2017 ◽  
Vol 1 ◽  
pp. 13
Author(s):  
G. Bachir Raho

The purpose of this research was to evaluate the in vitro antibacterial activity of the essential oils from the resin of Pistacia lentiscus against Staphylococcus aureus (Gram–positive bacteria) and Escherichia coli (Gram–negative bacteria). The agar disc diffusion method was used for microbial growth inhibition at various dilutions of the oils. Results showed that the tested essential oils possess antibacterial activity against S. aureus but inactive on E. coli. These results may have significant implications for the future development of resin oils of P. lentiscus as an antimicrobial agent for the treatment of the infections caused by S. aureus. 


Author(s):  
Kandikonda Maneesh ◽  
Kanakam Vijayabhaskar ◽  
Heena Firdouse ◽  
Pingali Srinivasa Rao ◽  
Mothukuri Prajwitha ◽  
...  

The current study was aimed to evaluate the antimicrobial properties of crude and N-Butanol fraction latex of C. papaya. Methods: in vitro antimicrobial activity The test organisms were P.vesicularis, streptococcus faecalis, Aeromonas hydrophilia, Salmonela typhae, Stphylococcus cohni, Serratia ficaria and E.coli. Ciprofloxacin was used as a control for investigating the bacterial species. The Zone of inhibition was determined forconcentration ranging from 12.5mg/ml to 50mg/ml. (12.5mg/ml, 25mg/ml, 37.5mg/ml, and 50mg/ml). Antibacterial activity tested for well diffusion method. Conclusion: It is concluded that the latex of C.papaya probably contains some valuable antimicrobial compounds that are crucial for inhibiting the growth of a wide variety of bacteria, especially Gram-negative bacteria and suggesting this for applying the treatment of a variety of bacterial infections.


Author(s):  
THAMIZHPRIYA M ◽  
AVILA JERLEY A ◽  
SHALINI GNANAM T ◽  
JEYAKANI M ◽  
INDU S ◽  
...  

Objective: The objective of the study was to evaluate the antibacterial activity of methanolic stem fraction of Tinospora cordifolia against Escherichia coli and Staphylococcus aureus by in vitro and in silico approaches. Methods: In agar disc diffusion method, the inhibitory zone produced by various concentrations of the fraction showed a dose-dependent inhibition pattern. Minimum inhibitory concentration (MIC) values were calculated by broth dilution method. The total DNA present in the fraction treated bacterial cultures was estimated and compared with control DNA. The two-dimensional and three-dimensional structures of the gas chromatography– mass spectrometry (GC–MS) identified compounds were generated using ChemSketch tool. The docking studies were performed for analyzing the receptor and ligand interactions. Results: The higher zone revealed the maximum inhibition of the growth of bacteria that were ranged from 2 mm to 6 mm for E. coli and 1.5 mm to 6.3±0.29 mm for S. aureus. MIC values showed that 30 μg/ml of the fraction was found as the effective dose. The DNA content isolated from the treated culture of both the strains was comparatively lesser than that of the untreated control culture. The GC–MS data analysis depicted the presence 15 major components in the fraction and the sharp peaks were obtained at time intervals 17.50, 20.27, 30.06, etc. Conclusion: Thus, methanolic stem fraction of T. cordifolia possesses promising therapeutic activity against the urinary tract infection pathogens such as E. coli and S. aureus and a further exploration in the isolation and characterization such as plant-derived phytoconstituents would open up new ventures in the field of antibacterial drug discovery.


2020 ◽  
Vol 32 (3) ◽  
pp. 580-586
Author(s):  
Ranjit V. Gadhave ◽  
Bhanudas S. Kuchekar

A new series of N-(benzo[d]thiazol-2-yl)-[1,2,4]triazolo[4,3-c]quinazoline-5-carboxamide derivatives were synthesized by condensation of [1,2,4]triazolo[4,3-c]quinazoline-5-carboxylate derivatives with substituted benzothiazoles. The chemical structures of the synthesized compounds were confirmed by FT-IR, MS and 1H NMR spectra. Designed triazoloquinazoline derivatives were docked with oxido-reductase enzyme (PDB Code 4h1j) and DNA gyrase enzyme (PDB Code 3g75). Based on high binding affinity score, the best compound were selected for synthesis and subjected to in vitro antioxidant and antibacterial activity. Compounds 7a and 7d were found to be most active compounds as antioxidant agent among this series when compared with ascorbic acid. Compounds 7a, 7d and 7f were found to be most active compounds as an antibacterial agents among this series when compared with ciprofloxacin against bacterial strains such as S. aureus (ATCC 25923), E. coli (ATCC 25922) and P. aeruginosa (ATCC 27853). Study revealed that the most active compounds after structural modifications can be exploited as lead molecules for other pharmacological activities such as anti-inflammatory, anticancer and antidepressant activities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaitlin S. Witherell ◽  
Jason Price ◽  
Ashok D. Bandaranayake ◽  
James Olson ◽  
Douglas R. Call

AbstractMultidrug-resistant bacteria are a growing global concern, and with increasingly prevalent resistance to last line antibiotics such as colistin, it is imperative that alternative treatment options are identified. Herein we investigated the mechanism of action of a novel antimicrobial peptide (CDP-B11) and its effectiveness against multidrug-resistant bacteria including Escherichia coli #0346, which harbors multiple antibiotic-resistance genes, including mobilized colistin resistance gene (mcr-1). Bacterial membrane potential and membrane integrity assays, measured by flow cytometry, were used to test membrane disruption. Bacterial growth inhibition assays and time to kill assays measured the effectiveness of CDP-B11 alone and in combination with colistin against E. coli #0346 and other bacteria. Hemolysis assays were used to quantify the hemolytic effects of CDP-B11 alone and in combination with colistin. Findings show CDP-B11 disrupts the outer membrane of E. coli #0346. CDP-B11 with colistin inhibits the growth of E. coli #0346 at ≥ 10× lower colistin concentrations compared to colistin alone in Mueller–Hinton media and M9 media. Growth is significantly inhibited in other clinically relevant strains, such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. In rich media and minimal media, the drug combination kills bacteria at a lower colistin concentration (1.25 μg/mL) compared to colistin alone (2.5 μg/mL). In minimal media, the combination is bactericidal with killing accelerated by up to 2 h compared to colistin alone. Importantly, no significant red blood hemolysis is evident for CDP-B11 alone or in combination with colistin. The characteristics of CDP-B11 presented here indicate that it can be used as a potential monotherapy or as combination therapy with colistin for the treatment of multidrug-resistant infections, including colistin-resistant infections.


Drug Research ◽  
2020 ◽  
Author(s):  
Pinki Yadav ◽  
Kashmiri Lal ◽  
Ashwani Kumar

AbstractThe in vitro antimicrobial properties of some chalcones (1a–1c ) and chalcone tethred 1,4-disubstituted 1,2,3-triazoles (2a–2u) towards different microbial strains viz. Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Aspergillus niger and Candida albicans are reported. Compounds 2g and 2u exhibited better potency than the standard Fluconazole with MIC values of 0.0063 µmol/mL and 0.0068 µmol/mL, respectively. Furthermore, molecular docking was performed to investigate the binding modes of two potent compounds 2q and 2g with E. coli topoisomerase II DNA gyrase B and C. albicans lanosterol 14α-demethylase, respectively. Based on these results, a statistically significant quantitative structure activity relationship (QSAR) model was successfully summarized for antibacterial activity against B. subtilis.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4383
Author(s):  
Barbara Lapinska ◽  
Aleksandra Szram ◽  
Beata Zarzycka ◽  
Janina Grzegorczyk ◽  
Louis Hardan ◽  
...  

Modifying the composition of dental restorative materials with antimicrobial agents might induce their antibacterial potential against cariogenic bacteria, e.g., S.mutans and L.acidophilus, as well as antifungal effect on C.albicans that are major oral pathogens. Essential oils (EOs) are widely known for antimicrobial activity and are successfully used in dental industry. The study aimed at evaluating antibacterial and antifungal activity of EOs and composite resin material (CR) modified with EO against oral pathogens. Ten EOs (i.e., anise, cinnamon, citronella, clove, geranium, lavender, limette, mint, rosemary thyme) were tested using agar diffusion method. Cinnamon and thyme EOs showed significantly highest antibacterial activity against S.mutans and L.acidophilus among all tested EOs. Anise and limette EOs showed no antibacterial activity against S.mutans. All tested EOs exhibited antifungal activity against C.albicans, whereas cinnamon EO showed significantly highest and limette EO significantly lowest activity. Next, 1, 2 or 5 µL of cinnamon EO was introduced into 2 g of CR and microbiologically tested. The modified CR showed higher antimicrobial activity in comparison to unmodified one. CR containing 2 µL of EO showed the best antimicrobial properties against S.mutans and C.albicans, while CR modified with 1 µL of EO showed the best antimicrobial properties against L.acidophilus.


Sign in / Sign up

Export Citation Format

Share Document