scholarly journals Plasma-Induced Hemi-Wicking on Sanded Polymer Surfaces

Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 871
Author(s):  
Po-Hsien Chiu ◽  
Ching-Jung Wu ◽  
Chun-Ping Hsiao ◽  
Chih-Tung Liu ◽  
Mu-Chien Wu ◽  
...  

In this paper, a plasma-induced hemi-wicking phenomenon observed on hydrophobic sanded polymer surfaces, polypropylene (PP), polyethylene terephthalate (PET) and polyethylene (PE) is reported. An atmospheric-pressure argon plasma jet was used to treat a limited area of the carefully sanded polymer surfaces to induce the hemi-wicking phenomenon. Such hemi-wicking triggered by the plasma activation is different from the traditional type, which is achieved purely by the surface topography. Surface analyses by X-ray photoelectron spectroscopy (XPS) and water contact analysis (WCA) show that the combination of sanding and plasma treatment increased the oxygen-to-carbon ratio, which is highly beneficial for surface hydrophilicity. The shear stress tests show that the combination of sanding and plasma treatment can enhance the shear stress by 125%, 95%, and 296% on PP, PET, and PE, respectively. The study shows that the newly developed technique by combining the sanding and plasma processing for polymers could be a potentially useful method in future industry applications.

2017 ◽  
Vol 381 ◽  
pp. 3-7
Author(s):  
Ko Shao Chen ◽  
Shao Hsuan Tsao ◽  
Rui Wen Sung ◽  
Ying Chen Ye ◽  
Bo Han Zeng ◽  
...  

Thermoplastic urethane (TPU) nonwoven is characterized by high elasticity, tensile strength, large elongation and structural stability and widely used in biomaterial. However, the hydrophobic nature of TPU nonwoven restricts its application. To improve surface hydrophilicity and hydrophobicity, the surface modification of materials is carried out by plasma treatment or ion-beam irradiation. According to the wettability treatment experiences that substrate usually using two processing or more to get one side hydrophilic and another side hydrophobic. In this study, use of cold plasma treatment in enhancing surface wettability of TPU nonwoven was studied. The surface properties of plasma treated films are characterized by Atomic Force Microscope (AFM), water contact angle measurement, and scanning electron microscopy (SEM). This study has demonstrated that Argon plasma treatment produces hydrophobic or hydrophilic surface on the TPU nonwoven. The method is performed by first placing a hydrophobic material on one side of substrate and bring this side to face the lower electrode. By controlling the RF power of the reactor, hydrophilic or hydrophobic surface can be prepared on the other side. This technique can be applied to wound dressing.


2021 ◽  
Vol 22 (13) ◽  
pp. 6672
Author(s):  
Nina Recek ◽  
Matej Holc ◽  
Alenka Vesel ◽  
Rok Zaplotnik ◽  
Peter Gselman ◽  
...  

Seeds of common bean (Phaseolus vulgaris L.), of the Etna variety, were treated with low-pressure oxygen plasma sustained by an inductively coupled radiofrequency discharge in the H-mode for a few seconds. The high-intensity treatment improved seed health in regard to fungal contamination. Additionally, it increased the wettability of the bean seeds by altering surface chemistry, as established by X-ray photoelectron spectroscopy, and increasing surface roughness, as seen with a scanning electron microscope. The water contact angle at the seed surface dropped to immeasurably low values after a second of plasma treatment. Hydrophobic recovery within a month returned those values to no more than half of the original water contact angle, even for beans treated for the shortest time (0.5 s). Increased wettability resulted in accelerated water uptake. The treatment increased the bean radicle length, which is useful for seedling establishment in the field. These findings confirm that even a brief plasma treatment is a useful technique for the disinfection and stimulation of radicle growth. The technique is scalable to large systems due to the short treatment times.


1996 ◽  
Vol 11 (6) ◽  
pp. 1570-1573 ◽  
Author(s):  
E. T. Kang ◽  
K. Kato ◽  
Y. Uyama ◽  
Y. Ikada

Surface modification of emeraldine (EM) and nigraniline (NA) base films by argon plasma treatment was investigated by x-ray photoelectron spectroscopy (XPS). Argon plasma treatment, followed by atmospheric exposure, results in the oxidation of some carbon atoms, first to C–O species and then to C = O and COOH species for samples with extended plasma treatment time. Most important of all, Ar plasma treatment and the accompanied carbon oxidation readily cause a decrease in the intrinsic oxidation state ([=N— ]/[—NH—] ratio) of the aniline polymers.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1136 ◽  
Author(s):  
Rok Zaplotnik ◽  
Alenka Vesel

Precise tailoring of surface properties by gaseous plasma treatments remains a key scientific challenge, especially when adequate surface wettability should be laterally distributed, and sharp interfaces between hydrophobic and hydrophilic areas are desirable. The evolution of surface wettability and functional groups on polystyrene (PS) upon treatment with argon plasma jet was monitored by water contact angles and X-ray photoelectron spectroscopy (XPS). An array of water droplets was deposited on PS samples treated either directly by the plasma jet or only VUV radiation arising from the plasma. Rather sharp interfaces between the activated and not-affected regions were observed in both cases. The functionalization with highly-oxidized carbon functional groups, as determined by high-resolution C1s XPS spectra, was by far more efficient using the VUV radiation only. In contrast, the optimal wettability was achieved using direct plasma treatment. The results were explained by different mechanisms involved in the interaction of radiation and reactive plasma species with the polymer surface.


2015 ◽  
Vol 1120-1121 ◽  
pp. 593-598
Author(s):  
Qiu Yuan Xiong

The absorbed liquids in the substrate material may have a potential influence on atmospheric pressure plasma treatment. In order to investigate how the influence of ethanol pretreatment affects atmospheric pressure plasma treatment, nylon 6 films were treated by helium/oxygen plasma using atmospheric pressure plasma jet (APPJ). Water contact angle of the ethanol pretreated samples was close to that of the control. Scanning electron microscopy (SEM) showed that the ethanol pretreated sample surface had a little change on the surface. X-ray photoelectron spectroscopy (XPS) showed that the carbon component decreased and the oxygen component increased after plasma treatment. With the ethanol pretreatment, the T-peel strength values for the samples were similar to that of the control.


1991 ◽  
Vol 227 ◽  
Author(s):  
Mark A. Petrich ◽  
Hsueh Yi Lu

ABSTRACTPolyimides are an important class of polymeric materials used in microelectronics fabrication. These polymers could be used even more extensively if it were possible to improve their moisture resistance. We are using plasma processing techniques to modify the moisture resistance of polyimide films. Films are exposed to nitrogen trifluoride plasmas to introduce fluorine into the surface of the polyimide. Fluorination is monitored with x-ray photoelectron spectroscopy and Fourier transform infrared absorption spectroscopy. Water contact angle measurements are used to assess the hydrophobicity of the treated surfaces. Thus far, we have demonstrated that this plasma treatment is a good way of introducing fluorine into the polyimide surface, and that these treatments do enhance the hydrophobic nature of polyimide.


2009 ◽  
Vol 610-613 ◽  
pp. 1259-1262 ◽  
Author(s):  
Na Ru Zhao ◽  
Ying Jun Wang ◽  
Li Ren ◽  
Xiao Feng Chen

Chitosan membranes were prepared by solvent cast method. In order to increase cell adhesion of the chitosan membranes, oxygen plasma treatment was applied to improve the hydrophilicity of the surface of chitosan membranes. The surface properties were characterized by scanning electron microscopy (SEM), contact angle analyzer, X-ray photoelectron spectroscopy (XPS). The effects of exposure time, plasma generating power, and chamber pressure on water contact angle of the chitosan membranes were investigated. The water contact angle of chitosan membranes decreased from 94.1° to 49.2° after plasma treatment. Which suggested the surfaces became more hydrophilic. XPS analysis showed that the oxygen content and the ratio of O/C increased markedly after oxygen plasma treatment. Furthermore, it was found that C-H bonds were broken with oxygen plasma treatment. C-OH group had been increased after plasma irradiation.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4243
Author(s):  
Alenka Vesel ◽  
Rok Zaplotnik ◽  
Gregor Primc ◽  
Miran Mozetič ◽  
Tadeja Katan ◽  
...  

Modification and functionalization of polymer surface properties is desired in numerous applications, and a standard technique is a treatment with non-equilibrium gaseous plasma. Fluorinated polymers exhibit specific properties and are regarded as difficult to functionalize with polar functional groups. Plasma methods for functionalization of polyvinylidene fluoride (PVDF) are reviewed and different mechanisms involved in the surface modification are presented and explained by the interaction of various reactive species and far ultraviolet radiation. Most authors used argon plasma but reported various results. The discrepancy between the reported results is explained by peculiarities of the experimental systems and illustrated by three mechanisms. More versatile reaction mechanisms were reported by authors who used oxygen plasma for surface modification of PVDF, while plasma sustained in other gases was rarely used. The results reported by various authors are analyzed, and correlations are drawn where feasible. The processing parameters reported by different authors were the gas pressure and purity, the discharge configuration and power, while the surface finish was predominantly determined by X-ray photoelectron spectroscopy (XPS) and static water contact angle (WCA). A reasonably good correlation was found between the surface wettability as probed by WCA and the oxygen concentration as probed by XPS, but there is hardly any correlation between the discharge parameters and the wettability.


2007 ◽  
Vol 1009 ◽  
Author(s):  
Stéphane Béfahy ◽  
Sami Yunus ◽  
Véronique Burguet ◽  
Jean-Sébastien Heine ◽  
Etienne Dague ◽  
...  

AbstractA process to fabricate stretchable and adherent gold tracks on flat silicone rubber substrates is studied by X-ray photoelectron spectroscopy (XPS), static water contact angle measurement, atomic force microscopy (AFM) and scanning electron microscopy (SEM). The process involves several steps: curing flat silicone substrate; removing uncured oligomers by hexane Soxhlet extraction; pre-stretching the substrate; activating the strained silicone surface by an oxygen plasma treatment; coating the strained substrate with 5nm titanium and 80nm gold layers by e-beam evaporation; and finally releasing the sample. The plasma treatment creates a thin brittle silica-like layer that temporarily increases the substrate's surface energy. Indeed the plasma treatment is followed by a hydrophobic recovery. As a consequence, the delay between plasma treatment and metal deposition has to be reduced as much as possible. The silica-like layer can be nicely observed after release. Its thickness is estimated to be around 20nm to 50nm. The entire process allows us to obtain stretchable metallized samples that remain conductive even after an excessive deformation leading to electrical failure.


Sign in / Sign up

Export Citation Format

Share Document