scholarly journals Energy-Saving Research on New Type of LED Sensor Lamp with Low-Light Mode

Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1649
Author(s):  
Chun-Te Lee ◽  
Ping-Tsan Ho

In general, the sensor lamps in the corridors, stairwells, or toilets of buildings will change from completely dark to full brightness when someone passes by. It will make the human eyes feel very uncomfortable, and when the sensor lamp is completely dark, the whole corridor and stairwell will be dark, making women and children feel insecure at night. If the lighting is changed to be sensor-less, there is a serious problem of wasted energy. To solve this dilemma, we developed a new type of “LED sensor lamp with low-light mode” that changes the original “full dark mode” to “low-light mode”. As such, when someone approaches the sensor lamp, their eyes will not be uncomfortable with the momentary illumination. Furthermore, when no one passes by, the sensor lamp will stay in low-light mode, so that people returning home at night no longer have to go through dark corridors, thereby achieving safety, aesthetics, and energy-saving purposes. This new sensor lamp’s power consumption in low-light mode is only 1/10 of the high-light mode, but its brightness can be up to half of the high-light mode, making it very suitable for parking lots, corridors, stairways, or toilets of buildings. It only requires the replacement of the lamp but not the original lamp socket, yet the basic brightness can be maintained. Take the general 15W T8 LED lamp (sensor-less) as an example: if it is replaced by this new type of sensor lamp, and the place where it is installed is rarely passed by people, the power saving rate will be as high as 90%. Assuming that there are 12 passers-by per hour, the saving rate is still 81%.

2022 ◽  
Vol 12 (1) ◽  
pp. 420
Author(s):  
Chun-Te Lee ◽  
Liang-Bi Chen ◽  
Huan-Mei Chu ◽  
Che-Jen Hsieh ◽  
Wei-Chieh Liang

Reducing residential and industrial electricity consumption has been a goal of governments around the world. Lighting sources account for a large portion of the whole energy/power consumption. Unfortunately, most of the existing installed lighting systems are ancient and have poor energy efficiency. Today, many manufacturers have introduced light-controlling systems into the current market. However, existing light controlling systems may not be successfully applied to buildings, streets, and industrial buildings due to high costs and difficult installation and maintenance. To combat this issue, this article presents an easy-to-install, low-cost, Master-Slave intelligent LED light-controlling system based on Internet of Things (IoT) techniques. The benefit of using the proposed system is that the brightness of the LED lights in the same zone can be changed simultaneously to save in energy consumption. Furthermore, the parameters of the LED lights can be directly set. Moreover, the related data are collected and uploaded to a cloud platform. In this article, we use 15 W T8 LED tubes (non-induction lamps) as a case study. When the proposed system is installed in a zone with few people, the energy-saving rate is as high as 90%. Furthermore, when 12 people pass by a zone within one hour, its energy-saving rate can reach 81%. Therefore, the advantages of using the proposed system include: (1) the original lamp holder can be retained; (2) no wiring is required; and (3) no server is set up. Moreover, the goal of energy saving can also be achieved. As a result, the proposed system changes the full-dark mode of the available sensor lamp to the low power low-light mode for standby. Further, it makes the sensor lamps in the same zone brighten or low-light way simultaneously, which can quickly complete large-scale energy-saving and convenient control functions of intelligent LED lighting controlling system.


2012 ◽  
Vol 608-609 ◽  
pp. 1139-1142
Author(s):  
He Wang ◽  
Xue Fei Zhang ◽  
Rui Ming Tong ◽  
Tao Yong Li ◽  
Meng Jie Shi

The energy-saving effect of the injection molding machine energy-saving reformation project was measured in a factory. Based on the analysis of the project energy-saving principle, analyzed the energy-saving rate of the reformed injection molding machine in case of producing different products. The test results show that the active power saving rate is 50% under the load condition, the active power saving rate is more than 75% under the no-load condition and energy-saving effect is more obvious under the no-load condition. Finally, analyzed the power quality impact caused by the energy-saving equipment on the distribution network, put forward some suggestions for improvement.


2014 ◽  
Vol 1008-1009 ◽  
pp. 1106-1109
Author(s):  
Zhi Feng Dong ◽  
Yu Dong Han ◽  
Lian Shao ◽  
Xu Wen Cheng

The causes of greater energy loss for throttling in the fan and pump were analyzed, and the principle of frequency control in energy saving were analyzed on the basis of the similarity theory, too. To export the relationship between the power saving rate and flow, the relationship between the energy consumption of throttling regulation and flow were described. Comparison between frequency control and throttling regulation in changing the flow shows that motor frequency control applied in pump and fan is an efficient way to save power. It confirms that under meeting the similarity condition, the power saving rate of theoretical calculation is consistent with the measured data.


2021 ◽  
Author(s):  
Tom E van den Berg ◽  
Roberta Croce

Xanthophyll cycles have proven to be major contributors to photoacclimation for many organisms. This work describes a light-driven xanthophyll cycle operating in the chlorophyte Chlamydomonas reinhardtii and involving the xanthophylls Lutein (L) and Loroxanthin (Lo). Pigments were quantified during a switch from high to low light and at different time points from cells grown in Day/night cycle. Trimeric LHCII was purified from cells acclimated to high or low light and their pigment content and spectroscopic properties were characterized. The Lo/(L+Lo) ratio in the cells varies by a factor of 10 between cells grown in low or high light leading to a change in the Lo/(L+Lo) ratio in trimeric LHCII from 0.5 in low light to 0.07 in high light. Trimeric LhcbMs binding Loroxanthin have 5+/-1% higher excitation energy transfer from carotenoid to Chlorophyll as well as higher thermo- and photostability than trimeric LhcbMs that only bind Lutein. The Loroxanthin cycle operates on long time scales (hours to days) and likely evolved as a shade adaptation. It has many similarities with the Lutein-epoxide - Lutein cycle of plants.


1986 ◽  
Vol 41 (5-6) ◽  
pp. 597-603 ◽  
Author(s):  
Aloysius Wild ◽  
Matthias Höpfner ◽  
Wolfgang Rühle ◽  
Michael Richter

The effect of different growth light intensities (60 W·m-2, 6 W·m-2) on the performance of the photosynthetic apparatus of mustard plants (Sinapis alba L.) was studied. A distinct decrease in photosystem II content per chlorophyll under low-light conditions compared to high-light conditions was found. For P-680 as well as for Oᴀ and Oв protein the molar ratio between high-light and low-light plants was 1.4 whereas the respective concentrations per chlorophyll showed some variations for P-680 and Oᴀ on the one and Oв protein on the other hand.In addition to the study of photosystem II components, the concentrations of PQ, Cyt f, and P-700 were measured. The light regime during growth had no effect on the amount of P-700 per chlorophyll but there were large differences with respect to PQ and Cyt f. The molar ratio for Cyt f and PQ between high- and low-light leaves was 2.2 and 1.9, respectively.Two models are proposed, showing the functional organization of the pigment system and the electron transport chain in thylakoids of high-light and low-light leaves of mustard plants.


2017 ◽  
Vol 14 (24) ◽  
pp. 5693-5704 ◽  
Author(s):  
Gabriella M. Weiss ◽  
Eva Y. Pfannerstill ◽  
Stefan Schouten ◽  
Jaap S. Sinninghe Damsté ◽  
Marcel T. J. van der Meer

Abstract. Over the last decade, hydrogen isotopes of long-chain alkenones have been shown to be a promising proxy for reconstructing paleo sea surface salinity due to a strong hydrogen isotope fractionation response to salinity across different environmental conditions. However, to date, the decoupling of the effects of alkalinity and salinity, parameters that co-vary in the surface ocean, on hydrogen isotope fractionation of alkenones has not been assessed. Furthermore, as the alkenone-producing haptophyte, Emiliania huxleyi, is known to grow in large blooms under high light intensities, the effect of salinity on hydrogen isotope fractionation under these high irradiances is important to constrain before using δDC37 to reconstruct paleosalinity. Batch cultures of the marine haptophyte E. huxleyi strain CCMP 1516 were grown to investigate the hydrogen isotope fractionation response to salinity at high light intensity and independently assess the effects of salinity and alkalinity under low-light conditions. Our results suggest that alkalinity does not significantly influence hydrogen isotope fractionation of alkenones, but salinity does have a strong effect. Additionally, no significant difference was observed between the fractionation responses to salinity recorded in alkenones grown under both high- and low-light conditions. Comparison with previous studies suggests that the fractionation response to salinity in culture is similar under different environmental conditions, strengthening the use of hydrogen isotope fractionation as a paleosalinity proxy.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4734 ◽  
Author(s):  
Jing Zhao ◽  
Yahui Du

An educational building is a kind of public building with a high density of occupants and high energy consumption. Energy-saving technology utilization is an effective measure to achieve high-performance buildings. However, numerous studies are greatly limited to practical application due to their strong regional pertinence and technical simplicity. This paper aims to further optimize various commonly used technologies on the basis of the current national standards, and to individually establish four recommended technology selection systems corresponding to four major climatic regions for realizing nearly zero energy educational buildings (nZEEBs) in China. An educational building was selected as the case study. An evaluation index of energy-saving contribution rate (ECR) was proposed for measuring the energy efficiency of each technology. Thereafter, high energy efficiency technologies were selected and implemented together in the four basic cases representing different climatic regions. The results showed that the total energy-saving rate in severe cold regions increased by 70.74% compared with current national standards, and about 60% of the total energy-saving rate can be improved in cold regions. However, to realize nZEEBs in hot summer and cold winter regions as well as in hot summer and warm winter regions, photovoltaic (PV) technology needs to be further supplemented.


2014 ◽  
Vol 508 ◽  
pp. 227-230
Author(s):  
Ting Ting Liu

In consideration of the current situation that college buildings are still heated as normal without occupancy,causing energy waste,the on-duty heating will be adopted in college buildings without occupancy under the premise to ensure the indoor comfort requirements.In the case of one college, the energy saving rate and cost saving rate were evaluated for college buildings that used zone and time control heating systems for buildings of different functions.The results show that the annual heating energy saving rate is 34.5%,and the annual heating cost saving rate is 51.5%. In similar collage buildings, 5.48kg of standard coal and 14.43Yuan per square meter of structure area can be saved per year if using zone and time control heating.


Sign in / Sign up

Export Citation Format

Share Document