scholarly journals Transesterification of Pyrolysed Castor Seed Oil in the Presence of CaCu(OCH3)2 Catalyst

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6064
Author(s):  
Vikas Sharma ◽  
Abul Kalam Hossain ◽  
Ganesh Duraisamy ◽  
Murugan Vijay

Energy consumption is on the rise due to rapid technological progress and a higher standard of living. The use of alternative energy resources is essential to meet the rising energy demand and mitigate the carbon emissions caused due to use of fossil-based fuels. Biodiesel produced from non-edible oils such as castor seed oil (CO) can be used in diesel engines to replace fossil diesel. However, the quality and yields for CO biodiesel is low due to the presence of ricinolic acid C18:1OH (79%). In this study, two-stage conversion techniques were used to improve the yields and properties of CO biodiesel. The catalyst CaCu(OCH3)2 was prepared from waste eggshell and synthesized with copper oxide in the presence of methanol. The castor oil was subjected to pyrolysis at 450–500 ℃ and then transesterified in the presence of modified catalyst. The reaction parameters such as methanol-to-oil ratio and catalyst and reaction time were investigated, and the optimum combination was used to produce castor biodiesel from pyrolysis castor oil. Results showed that the cetane number and oxidation stability were increased by 7% and 42% respectively. The viscosity, density, flash point, and iodine value were decreased by 52%, 3%, 5% and 6%, respectively. The calorific values remained the same. This study suggests that pyrolyzed castor seed oil followed by transesterification in the presence of a modified catalyst gave better fuel properties and yields than the conventional transesterification process for biodiesel fuel production.

2016 ◽  
Vol 3 (5) ◽  
pp. 3 ◽  
Author(s):  
Ubaid Rasool ◽  
S. Hemalatha

Bioenergy refers to renewable energy produced from biomass. Biomass is any organic material which has stored sunlight in the form of chemical energy. Depleting fossil fuel reserves and growing demand for energy has necessitated the renewed search for alternative energy resources such as plants. Biofuels are an alternative to fossil fuels, which are liquid or gaseous fuels that are derived from biomass sources. Biofuels can be used alone or in combination with other fossil fuels such as petrol. Biofuels are classified into first, second and third generation biofuels. In this review paper, emphasis on the production of biodiesel and bioethanol and how to modify the methods that involve their formation has been carried out. Biodiesel and bioethanol come under first generation biofuels. The first generation biofuels are produced from starch and sugars (bioethanol) and from seed oils (biodiesel). The direct use of vegetable oils and non-edible oils can prove harmful for the diesel engines due to their high viscosity, high density and various other problems that are related to them. So there is a need of converting these sources into biodiesel so that it can be used as a replacement for petroleum based diesel. Another important biofuel, referred to as bioethanol has gained a lot of importance. This review article deals with the conversion of non-edible oils to biodiesel or by modifying the process of transesterification as well as the conversion of sugars to bioethanol by genetic modification of yeast cells and by changing the substrates required for ethanol production by yeast.


2020 ◽  
Vol 24 (8) ◽  
pp. 1467-1473
Author(s):  
M.S. Chomini ◽  
A.J. Daspan ◽  
C. Kambai ◽  
A.E. Chomini ◽  
E.A. Bassey ◽  
...  

Study on assessmentof biodiesel fuel potentials of seed crude oil extracts of Balanites aegyptiaaca (L.) Del was carriedout. Standard methods of the Association of Official and Analytical Chemist (AOAC) were adopted to evaluate the proximate, physico-chemical properties and fatty acid  compositions of crude seed oil extracts of the test plant. The proximate constituents of the crude seed oil extract gave crude protein (22.09%), crude fat (56.75%), moisturecontent (1.35%), ash (4.70%), crudefiber (12.75%) and carbohydrate (2.36%). The crude oil physicochemical properties included saponification value(216.439mgKOH/g), peroxide value(4.84meq/kg), acid value(2.18mgKOH/g), iodine value(77.08g/100g), viscosity  value(150.3@30°C) and cetane number(54.08), refractive index(1.487 @30°C), relative density (0.949g/cm3) while calorific value was 39.03(MJ/kg). The fatty acids composition of crude kernel oil extract of B. aegyptiaca indicated the presence of four (4) fatty acids, with relative percentage abundance (RPA) in the order of 67.17% (9,12-Octadecanoic acid (C19 H3402)) > 16.22% (Pentadecanoic acid (C17H3402)) > 11.8kg% (Heptacosanoic acid (C28H5602)) > 4.72% (Oleic acid(C18H3402)). These properties conferred relative prospects on the crude oil of the test plant as a suitable  potential biodiesel substrate and consequently, large scale aforestation efforts be renewed, to guarantee ready availability of the raw materials. Keywords: Balanites aegyptiaca, Biodiesel, proximate, physicochemical, crude seed oil extracts


2019 ◽  
Vol 23 (Suppl. 5) ◽  
pp. 1779-1788
Author(s):  
Radivoje Pesic ◽  
Aleksnadar Davinic

Rapid growth in the energy consumption has conditioned the need for discovering the alternative energy resources which would be adapted to the existing engine constructions and which would satisfy the additional criteria related to the renewability, ecology, and reliability of use. The experimental research are conducted according to the (European Stationary Cycle - Directive 1999/96/EC) 13-mode. Using biodiesel fuel average thermal efficiency is kept at the level of the application of conventional diesel fuel, average emission of CO is reduced by 13.6%, average emission of NO is increased by x 27.6%, average emission of hydrocarbon is increased by 59.4%, and average particles emission is reduced by 43.2%.


2021 ◽  
Author(s):  
Kapilan Natesan ◽  
Rana Pratap Reddy ◽  
Abu Saleh Ahmed

Abstract The world’s energy demand increases because of increase in human population. The conventional fossil energy resources will be depleted and burning of these conventional fuels increases greenhouse gases and causes global warming. These problems can be overcome using renewable alternative energy resources such as biofuels. In recent years biodiesel is considered as a renewable alternative to the fossil diesel. The utilisation of biodiesel as a fuel in compression ignition engine results in lower CO, HC and Smoke emissions as the biodiesel is an oxygenated fuel. The major problem with the biodiesel is its higher NOx emission and different techniques were used to minimise NOx emission. The use of synthetic and nano-metal additives to the biodiesel may affect the environment and hence it is necessary to identify non-toxic, low cost, biodegradable, and sustainable additives to reduce the NOx emission. Hence an attempt was made to use clove oil as a natural additive for the honge oil biodiesel as it has better antioxidant property. The engine tests were conducted with various dosages of clove oil such as 1000 and 2000 ppm and the engine load were increased with an increment of 25% up to full load. The addition of clove oil to the honge oil biodiesel significantly affects the engine NOx and clove oil can be substituted as an additive to reduce the NOx emission of the biodiesel fuelled CI engine and without altering the engine hardware. The clove oil enhances the oxidation stability of the honge oil biodiesel.


Author(s):  
Tsegay Hiwot

Biodiesel is a clean, renewable, biodegradable, environmentally benign, energy efficient and diesel substituent fuel used in diesel engine. It provides a feasible solution to the twin crises of fossil fuel depletion and environmental pollution. It is produced from renewable sources such as vegetable oils or animal fats by trans-esterification. Although this fuel has gained worldwide recognition for many years, it is not being widely commercialized like petroleum diesel in the world, not widely produced and used especially in our country Ethiopia. Analysis of fatty acid methyl ester composition of the biodiesel produced from castor oil was done with the help of GC-MS and 8 fatty acid methyl esters were identified. Acid and base catalyzed methods were used in the synthesis of biodiesel from castor seed oil. In addition to this the variables that affect the amount of methyl ester yield were determined and an optimum of 96.7 % fatty acid methyl ester (FAME) conversion was obtained at a methanol to oil molar ratio of 6:1, 1.0 % mass NaOH, 65 °C reaction temperature and 3 hour reaction time. The energy content of the oil and biodiesel were 39 MJ/Kg and 40.7 MJ/ Kg respectively which is determined by bomb calorimeter. Other physicochemical properties of the biodiesel were determined and all these lie within the ASTM and EN biodiesel standards except kinematic viscosity. Therefore, castor seed oil methyl ester could be used as an alternative energy resource in diesel engine by blending with petroleum diesel.


2018 ◽  
Vol 156 ◽  
pp. 03056 ◽  
Author(s):  
Hadiyanto Hadiyanto ◽  
Inaya Yuliandaru ◽  
Rafidha Hapsari

Due to increasing population growth, the consumption and needs of energy increase significantly. This leads Indonesia government to search alternative energy to cover the lacks of fossil energy reserves. Biodiesel is one of the prospective alternative energy which are renewable and environmental friendly. A common problem in large-scale biodiesel production is the sustainability of feedstock and the biodiesel stability. Therefore, the purpose of this study was to evaluate the production of biodiesel from two oil sources i.e. waste cooking oil and castor oil. This study examined the effect of mixed oil ratio on yield, biodiesel characteristics and stability. The physical properties included kinematic viscosity, acid number, saponification number, iodine number and cetane number have been evaluated as function of oil ratio. Yield of biodiesel was obtained at 35.07%, 99.2% and 83.69% for jatropha:castor oil ratio of 1: 0, 1: 2 and 2: 1, respectively. Most of these characteristics showed an increase by increasing the oil ratio. The result concluded that at the ratio of 1:1(v/v) was the best characteristic and stability.


2021 ◽  
Vol 896 (1) ◽  
pp. 012019
Author(s):  
I Munfarida ◽  
M Munir ◽  
A Rezagama

Abstract Indonesia’s energy demand has increased in recent years in line with the increase in economic growth and population in Indonesia. Most of this energy is derived from non-renewable sources such as oil, natural gas, and coal. These trends will have a significant impact on energy depletion. One solution to overcome this problem is developing alternative energy resources to replace petroleum, such as bio-alcohol. The objective of this study was to analyze the potential of bio-alcohol production from organic waste, that is, banana peel. This research is experimental. Bio-alcohol was obtained through a fermentation process of 3 types of banana peels waste, including Raja banana (Musa acuminata×M. balbisiana) peel, Agung banana (Musa paradisiaca) peel, and Nangka banana (Musa acuminata×M. balbisiana) peel. Fermentation was conducted using variations of Saccharomyces cerevisiae of 1%, 3%, and 5% with a fermentation time of 5 days. All experiments were performed in duplicate. The results showed that the highest value of bio-alcohol was produced from the waste of Raja Nangka peel at a concentration of 5% Saccharomyces cerevisiae, which was 1.70% (p-value <0.05). This study suggests the potential of banana peel waste in producing bio-alcohol as alternative energy in the future.


KnE Energy ◽  
2015 ◽  
Vol 2 (2) ◽  
pp. 119
Author(s):  
I Made Kartika Dhiputra ◽  
Numberi Johni Jonatan

<p>Indonesia’s dependency on fossil energy is relatively high; approximately 55 % fuel oil that comes from fossil is used in the household sector. The increasing of energy demand is not supported by the energy availability. This issue prompted the government of Indonesia to develop a diverse, cheaper, renewable, sustainable and eco-friendly alternative energy and to create an independent management which ensures the availability of energy to people in remote area. Among other possible solution, production of bioethanol from Metroxylon sago dregs as alternative energy resources is considered as the most feasible solution. Indonesia has ± 1,250,000 billion ha of sago plantation and in Papua there is ± 1,200,000 billion ha of land with sago potential, of which only 56 % is used. Research methods include fermentation of sago dregs to become bioethanol, its distillation process and flame characteristics. Results of laboratory experiment showed that sago dregs are viable as a source of fuel bioethanol because it still contains 82.4 % vol. of carbohydrate component. Measurement of flame temperature on bioethanol burner with ethanol content of 60 to 95 % is strongly influenced by these parameters: turbulence, temperature, mixing time and the rest of the air-fuel flow. </p><p><strong>Keywords</strong>: bioethanol; flame characteristics; Metroxylon sago dregs</p>


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1421
Author(s):  
Maryam Hanif ◽  
Haq Nawaz Bhatti ◽  
Muhammad Asif Hanif ◽  
Umer Rashid ◽  
Asma Hanif ◽  
...  

Disadvantages of biodiesel include consumption of edible oils for fuel production, generation of wastewater and inability to recycle catalysts during homogenously catalyzed transesterification. The aim of the current study was to utilize low-cost, inedible oil extracted from Sinapis arvensis seeds to produce biodiesel using a novel nano-composite superoxide heterogeneous catalyst. Sodium superoxide (NaO2) was synthesized by reaction of sodium nitrate with hydrogen peroxide via spray pyrolysis, followed by coating onto a composite support material prepared from silicon dioxide, potassium ferricyanide and granite. The roasted (110 °C, 20 min) and unroasted S. arvensis seeds were subjected to high vacuum fractional distillation to afford fractions (F1, F2 and F3) that correlated to molecular weight. For example, F1 was enriched in palmitic acid (76–79%), F2 was enriched in oleic acid (69%) and F3 was enriched in erucic acid (61%). These fractions, as well as pure unroasted and roasted S. arvensis seed oils, were then transesterified using NaO2/SiO2/PFC/Granite to give biodiesel a maximum yield of 98.4% and 99.2%, respectively. In contrast, yields using immobilized lipase catalyst were considerably lower (78–85%). Fuel properties such as acid value, cetane number, density, iodine value, pour point, and saponification value were within the ranges specified in the American biodiesel standard, ASTM D6751, where applicable. These results indicated that the nano-composite catalyst was excellent for production of biodiesel from unroasted and roasted S. arvensis seed oil and its fractions.


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 971
Author(s):  
Ines Simbi ◽  
Uyiosa Osagie Aigbe ◽  
Oluwaseun Oyekola ◽  
Otolorin Adelaja Osibote

The world is currently faced with the depletion of fossil fuel energy sources and their use is associated with environmental pollution. This has triggered the need to seek alternative energy sources that are renewable, sustainable and environmentally benign. Biodiesel, an alternative fuel of interest, is obtainable from biomass feedstocks. In existing biodiesel fuel, there are concerns that it is a contaminant due to its elemental contents, which over time also affect its quality. This study aimed to investigate the influence of a bifunctional catalyst on the conversion of free fatty acids and the elemental composition of biodiesel obtained from waste oils of sunflower and palm feedstocks. The synthesised catalyst was characterised using BET, XRD, FTIR and SEM while ICP-OES and Rancimat were used for elemental contents and oxidation in feedstocks and biodiesels. The effect of Cu, Zn and Fe metals on the stability of synthesised biodiesel was further studied. The catalyst showed characteristics of bifunctionality with improved textural properties necessary for the conversion of high free fatty acids feedstocks to biodiesel, despite increasing Ca content within the produced biodiesel. Sunflower biodiesel showed superior fuel quality, although palm biodiesel had more oxidation stability. An increase in the concentration of metals decreased the induction period, with Cu and Fe being more effective than Zn metal.


Sign in / Sign up

Export Citation Format

Share Document