scholarly journals Ammonia–Nitrate Mixture Dominated by NH4+–N Promoted Growth, Photosynthesis and Nutrient Accumulation in Pecan (Carya illinoinensis)

Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1808
Author(s):  
Mengyun Chen ◽  
Kaikai Zhu ◽  
Pengpeng Tan ◽  
Junping Liu ◽  
Junyi Xie ◽  
...  

Although ammonia–nitrogen (NH4+–N) and nitrate–nitrogen (NO3−–N) are the two main forms of N absorbed and utilized by plants, the preferences of plants for these forms are still unclear. In this study, we analyzed the growth, photosynthesis, and nutrients of pecan under different NH4+:NO3− ratios (0/0, 0/100, 25/75, 50/50, 75/25, 100/0) by indoor aerosol incubation. The results showed that additions of different N forms promoted the growth and development of pecan seedlings. When NO3−–N was used as the sole N source, it significantly promoted the ground diameter growth of pecan and increased the leaf pigment content and photosynthetic rate. The NH4+:NO3− ratio of 75:25 and NH4+–N as the sole N source significantly increased the soluble sugars in stems and roots, starch in leaves, stems and roots, soluble protein in leaves and stems, and soluble phenols in stems and roots. Additionally, the NH4+:NO3− ratio of 75:25 increased plant height, leaf number, root soluble protein, and leaf soluble phenol contents. In conclusion, regarding the physiological aspects of pecan growth, pecans are more inclined to use NH4+–N. Considering that the NH4+–N as the only N source may lead to nutrient imbalance or even toxicity, the NH4+:NO3− ratio of 75:25 was most favorable for the growth and development of pecan seedlings.

2011 ◽  
Vol 250-253 ◽  
pp. 3392-3396
Author(s):  
Yu Jia Song ◽  
Hui Qing Liu

The discharge of urban sewage and agricultural non-point source pollutants is the main reason causing eutrophication in gullies in most cities of northern China. Based on a careful analysis on the ecological structure and ecological characteristics of a gully, this article preliminarily studies the interception and degradation mechanisms of nitrogen pollutants by the gully. Meanwhile, to take gullies in Changchun as the object of the study, this article carries out an experiment on the interception effect of nitrogen pollutants by gullies. This experiment respectively establishes a control section in the upper and lower reaches of a gully, and takes water samples four times in each section from May to August to determine total nitrogen, total phosphorus, nitrate nitrogen, ammonia nitrogen and salinity. The result shows: the gully plays some role in the interception of pollutants; total phosphorus accounts for the largest interception in pollutants in the experimented gully section, with the relative interception rate of 27.46%, followed by ammonia nitrogen, with the interception rate of 21.80%, which is the result of the combined effects of aquatic plants, microorganisms and sediment in the gully.


Author(s):  
Nezahat Turfan

Main goals of the present study were (1) to initially investigate the nutrient contents and bioactive compounds in the bulb and cloves of garlic, and (2) to study the growth parameter after planting. Garlic bulbs were firstly separated into three categories as pickled, big and small, while the big garlic cloves were also classified into three categories as big, small and central. Secondly, the garlic samples were analyzed before planting for their element profile, proline, soluble protein, free amino acid, β-carotene, lycopene, total phenolic, soluble sugars, SOD and α-amylase activities. Finally, the growth parameters were measured using the cultivated cloves and the pickled bulbs. According to the result, the highest soluble protein, N, phenolic, lycopene and α amylase activity (97.06 mg, 2.58%, 971 mg, 0.368 mg and 38.13 EU, respectively) were recorded in the biggest cloves. The highest proline, amino acid, glucose content (93.84 µmol, 23.54 mg, 230.89 mg, respectively) and K, P, S, Mg, Mn, Fe and Zn (21940 ppm, 7577 ppm, 12200 ppm, 504 ppm, 38.1ppm, 377,7ppm and 44.5 ppm, respectively) were found in the pickled bulb. The maximum level of β-carotene (0.282 mg), Ca, Cl and Sr (11260ppm, 818.7ppm and 47.9 ppm) were determined in the small bulbs. Based on the growth parameters of seedlings, the highest value of shoot and root length (39.12 cm and 24.11 cm respectively), the fresh weight of shoot and root (5.29 g and 4.54 g respectively) and dry weight of shoot and root (1.70 g and 1.24 g respectively) were noted with the big cloves. The results of the current study have indicated that the pickled cloves have higher macro and micro nutrients, proline, amino acid and glucose, while the big cloves of garlic have higher proline, phenolic, N%, lycopene and amylase activity. It can be said that the big cloves showed good value for the five bioactive compounds, but the pickled exhibited good value for the macro and micro element and glucose.


2019 ◽  
Vol 10 (2) ◽  
pp. 117-124
Author(s):  
Nezahat Turfan ◽  
Sezgin Ayan ◽  
Esra Nurten Yer ◽  
Halil Barış Özel

Background and Purpose: This study presents the analysis of photosynthetic pigments, proline, total soluble protein, total amino acids, glucose, sucrose, total soluble sugars, total amount of phenolic compounds and flavonoids, malondialdehyde (MDA) and hydrogen peroxide (H2O2) concentration in the leaf samples collected from oriental beech trees, which are naturally spread in Kastamonu Province, Turkey, with differing ages, enzyme activities of ascorbate peroxidase (APX), catalase (CAT) and superoxide dismutase (SOD). Material and Methods: The research was carried out on oriental beech trees (Fagus orientalis L.) of different ages located at 1300 m high elevation in Ahlat Village of Kastamonu Province, Turkey. Oriental beech trees of different ages (≥25, ≥50, ≥100, ≥200 and ≥600 years-old) constituted the material of this study. In leaf samples taken from trees of different ages, photosynthetic pigments (chlorophyll a, chlorophyll b, total chlorophyll and carotenoid), proline, total soluble protein, total amino acid, glucose, sucrose, total soluble sugars, the amount of total phenolic compounds and flavonoids, MDA, H2O2 concentration, enzyme activities of APX, CAT and SOD, as well as the relationship between the total content of C, N and H elements and the tree ages were studied. Results: As a result of the research conducted, significant differences were determined in terms of chlorophyll, total phenolic compound, flavonoid, glucose, amounts of sucrose, nitrogenous compounds, proline, total soluble protein, MDA, H 2O2 concentrations, and the activities of APX, CAT and SOD in the leaves of oriental beech trees with differing ages. The highest content of chlorophyll a was found to be in the youngest age group of ≥25 years. Total chlorophyll is low in young trees and high in middle-aged, old and very old trees. According to the results obtained, it was concluded that the MDA and H2O2 concentrations in the trees did not vary depending on the age of trees only, but also on the genotype, environmental conditions and metabolic activities. It was concluded that the fact that the total chlorophyll, phenolic compounds and sucrose content in oriental beech trees are high and that MDA content is low could have an influence on the long life of ≥600 years-old oriental beech trees. Conclusions: The activity of photosynthesis is related to leaf characteristics more than the age of trees.


2011 ◽  
Vol 374-377 ◽  
pp. 498-503
Author(s):  
Jin Lan Xu ◽  
Lei Wang ◽  
Jun Chen Kang ◽  
Ting Lin Huang ◽  
Yu Hua Dong

Abstract: Active barrier system (ABS) capping zeolite with large surface area and strong adsorption ability is an effective way to control eutrophication of lake since it can remove ammonia in the lake released by sediment. Influence of the initial nitrogen concentration on eliminating nitrogen load of europhia sediment capping with active barrier system (ABS) were studied through an investigation of the repairment results of serious pollution period (total nitrogen concentration up to 25.33 mg/L), moderate pollution period (14.39 mg/L) and the slight pollution period (3.47 mg/L) of the ancient Canal of Yangzhou. The results showed that: (1) zeolite F1 inhibition effect is stronger than zeolite F2. More TN were removed as the initial TN concentration increased and longer rapid inhibit period were presented with the increased initial TN concentration. (2) The ammonia nitrogen in sediment could be rapidly released into the overlying water, and with lower initial TN concentration in source water, more ammonia would be released from the sediment. Long time treatment was necessary to inhibit the release of ammonia completely if the water showed a high initial TN concentration. (3) After covering zeolite, the total nitrogen in the overlying water were removed mainly through nitrification and denitrification. At the initial TN concentration of 3.47 mg/L, 14.39 mg/L, 25.88 mg/L, 61%, 45% and 52% of TN were removed by the conversion of ammonia to nitrogen gas, however, others left in water as nitrate nitrogen and nitrite residues, and 90% was nitrate nitrogen.


2019 ◽  
Vol 19 (6) ◽  
pp. 1636-1642
Author(s):  
Sizhi Cao ◽  
Peigui Liu ◽  
Mingchao Liu ◽  
Gang Wang ◽  
Zaili Li ◽  
...  

Abstract In this study, column experiments in the laboratory were set up to examine how the concentrations of nitrate nitrogen, nitrite nitrogen, and ammonia nitrogen changed when a nitrate-rich solution was passed through a medium comprising zero-valent iron, activated carbon, zeolite, and coarse sand. We varied the proportions of the components of the medium to determine how it influenced the nitrate removal and nitrogen fractions. Three different scenarios were used, with: (1) iron, activated carbon, and coarse sand at a ratio of 3:1:6; (2) iron, activated carbon, and zeolite at a ratio of 3:1:6; and (3) iron, activated carbon, and zeolite at a ratio of 3:3:4. The nitrate nitrogen concentration decreased from 25 mg/L to 2 mg/L in the first scenario. Removal was better when zeolite was added to the medium as most of the nitrate nitrogen broke down to ammonia nitrogen, with nitrite nitrogen as an intermediate product. The results of the tests showed that nitrate removal was best when the medium was iron, activated carbon, and zeolite, mixed at a ratio of 3:1:6. This study provides a scientific reference for in situ remediation of nitrate pollution in groundwater.


2015 ◽  
Vol 1092-1093 ◽  
pp. 933-937
Author(s):  
Xin Ran Jiang ◽  
Li Na Zheng ◽  
Xing Ai ◽  
Lin Zhang ◽  
Wei Nan Wu

Using the mixed filling reaction column, this article examines that the influence of different inlet flow rate on the removal of nitrate nitrogen in groundwater, respectively by 90mL/h, 150 mL/h, 210mL/h velocity, under 30 °C each run five days, comparativly studies the influence of velocity on denitrification. The results show that the flow rate has an important effect on the denitrification of water, when the water inlet velocity decreased from 150mL/h to 90mL/h, the concentration of nitrate nitrogen reaction column effluent decreased gradually, and the denitrification of nitrite nitrogen accumulation system has been in a low level, but the ammonia nitrogen accumulation only in the flow rate of 90mL/h, began when the flow rate decreased significantly; also increased from 90mL/h to 210mL/h, the effluent nitrate nitrogen concentration, nitrite nitrogen concentration and ammonia nitrogen concentration increased significantly.


2013 ◽  
Vol 746 ◽  
pp. 147-151 ◽  
Author(s):  
Jun Li ◽  
Jun Wang Tong ◽  
Shou Fang Jiang ◽  
Liu Nan ◽  
Shao Jia Wang ◽  
...  

Objectives To assess the current eutrophication and heavy metal pollution condition of South Lake by monitoring the water quality of South Lake Central Ecological Park in Tangshan city and to provide basic information and science basis for the continuity environmental monitoring and further treatment. Methods The water samples in South Lake were collected during 10th-12st May, 2011. Samples of surface water in Xixingchi, Yanglongshui, and Qingtianjing were determined temperature, pH, turbidity, dissolved oxygen (DO), biochemical oxygen demand (COD), biological oxygen demand (BOD520), total phosphorus (TP), ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, Hg, As, Cr, Cu, Zn, Ni, Pb, Cd and so on. Single water quality index and the integrated pollution index were calculated to assess water quality of sampling point. Results The sense character of all sample points did not accord with national standards.The BOD520 of Xixingchi, West Yanglongshui, North Yanglongshui and the four sampling points of Qingtianjing were more than national standards. The TP, ammonia nitrogen and nitrate nitrogen of Qingtianjings sample points exceeded national standards. Indicatorss of other sample were accord with national standards. Xixingchi, whichs comprehensive pollution index was 0.27, belonged to clean water. Yanglongshui, which`s comprehensive pollution index was 0.22, belonged to clean water too. Qingtianjing, whichs comprehensive pollution index was 1.99, belonged to polluted waters. Conclusions Xixingchi and Yanglongshui belongs to clean water. Qingtianjing belongs polluted water. The TP, ammonia nitrogen and nitrate nitrogen of Qingtianjings four sample points exceeded national standards. The severity of the pollution is: Qingtianjing>Yanglongshui>Xixingchi.


2005 ◽  
Vol 53 (3) ◽  
pp. 293-301 ◽  
Author(s):  
M. Ismail

aluminium treatment caused a significant decrease in root length and dry matter yield in the shoots and roots of carrot (Daucus carota L.) and radish (Raphanus sativus L.) plants. this reduction was concomitant with a decrease in the accumulation of soluble sugars and total amino acids, whereas a significant increase in the proline content of the shoots and roots was detected. Soluble protein remained more or less unchanged when Al was applied at low and moderate levels. However, at higher Al levels, the losses in soluble sugars were accompanied by increases in soluble protein in radish, whereas in carrot the opposite effect was observed.  The application of phosphorus fertilizer to al-treated plants counteracted the toxic effect of aluminium by increasing root elongation and dry matter production. This was associated with high contents of soluble sugars and soluble protein as well as ca, mg and p, especially at low and moderate levels of aluminium


Author(s):  

The long-term dynamic of the content and runoff of ammonia nitrogen in the water of the Middle Amur are discussed. There are decreasing of ammonia runoff in 1.4 times in comparison with 1981-2000, and dominance of nitrate nitrogen in runoff of mineral forms in recent years. Trends in runoff changes are due to transformation on the watershed. At present anthropogenic components of runoff is formed by the Songhua River runoff and is more pronounced in the wintertime.


Sign in / Sign up

Export Citation Format

Share Document