Chitosan based antimicrobial films for food packaging applications

e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Shipra Tripathi ◽  
G. K. Mehrotra ◽  
P. K. Dutta

AbstractAntimicrobial packaging is one of the most promising active packaging systems. Antimicrobial packaging is the packaging system that is able to kill or inhibit spoilage and pathogenic microorganisms that are contaminating foods. A tremendous effort has been made over the last decade to develop and test films with antimicrobial properties to improve food safety and shelf life. For food preservation, chitosan films are very effective. Chitosan has widely been used in antimicrobial films, to provide edible protective coating, dipping and spraying for the food products due to its antimicrobial properties. Chitosan can be formed into fibers, films, gels, sponges, beads or nanoparticles. Chitosan films have been used as a packaging material for the quality preservation of a variety of food. Chitosan has great potential for a wide range of applications due to its biodegradability, biocompatibility, antimicrobial activity, non-toxicity and versatile chemical and physical properties. The present review outlines the preparation and antimicrobial activity of chitosan based films.

Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 121
Author(s):  
Ghita Amor ◽  
Mohammed Sabbah ◽  
Lucia Caputo ◽  
Mohamed Idbella ◽  
Vincenzo De Feo ◽  
...  

The essential oil (EO) from basil—Ocimum basilicum—was characterized, microencapsulated by vibration technology, and used to prepare a new type of packaging system designed to extend the food shelf life. The basil essential oil (BEO) chemical composition and antimicrobial activity were analyzed, as well as the morphological and biological properties of the derived BEO microcapsules (BEOMC). Analysis of BEO by gas chromatography demonstrated that the main component was linalool, whereas the study of its antimicrobial activity showed a significant inhibitory effect against all the microorganisms tested, mostly Gram-positive bacteria. Moreover, the prepared BEOMC showed a spheroidal shape and retained the EO antimicrobial activity. Finally, chitosan-based edible films were produced, grafted with BEOMC, and characterized for their physicochemical and biological properties. Since their effective antimicrobial activity was demonstrated, these films were tested as packaging system by wrapping cooked ham samples during 10 days of storage, with the aim of their possible use to extend the shelf life of the product. It was demonstrated that the obtained active film can both control the bacterial growth of the cooked ham and markedly inhibit the pH increase of the packaged food.


2015 ◽  
Vol 7 ◽  
pp. 13
Author(s):  
Afendi Dahlan ◽  

revious studies have shown that Punicagranatum (P. granatum) extract exhibited antimicrobial activity against a wide range of pathogenic microorganisms. Thus, the aim of study was to formulate and determine the effectiveness of antimicrobial properties of gel containing P. granatummethanol extract against selected common skin pathogens including Staphylococcus aureus, Staphylococcusepidermidis, Pseudomonas aeruginosaand Candidaalbicans.


2013 ◽  
pp. 171-183 ◽  
Author(s):  
Emilija Ivanova ◽  
Natalija Atanasova-Pancevska ◽  
Dzoko Kungulovski

It is well known that essential oils possess significant antimicrobial activity. This study was conducted to estimate the antimicrobial activity of various types of Biokill, a laboratory produced solution composed of several essential oils (Biokill dissolved in 96% ethanol; Biokill 96% further dissolved in DMSO; Biokill dissolved in 70% ethanol and Biokill 70% further dissolved in DMSO). The antimicrobial activity was evaluated against five selected fungal strains, Candida albicans ATCC 10231, Saccharomyces cerevisiae ATCC 9763, Aspergillus niger I.N. 1110, Aspergillus sojae CCF and Penicillium spp. FNS FCC 266. A variation of the microtiter plate-based antimicrobial assay was used in order to assess the antimicrobial activity of the solutions. By applying this assay minimal inhibitory concentrations (MIC) of the Biokill solutions were determined for each strain of the selected test microorganisms. The results demonstrated that all variations of Biokill showed antimicrobial activity at concentrations lower than 2.5?g/mL. Biokill 70% further dissolved in DMSO showed the best antimicrobial properties against all the selected strains with MICs less than 1.25?g/mL. These results indicated that Biokill could find application in the pharmaceutical industry, in food preservation and conservation, in the prevention and treat?ment of plants infected by certain phytopathogens, etc.


Author(s):  
Diana Merchan ◽  
Mercy Agila ◽  
Marina Arteaga ◽  
Monica Criollo

Food Codex requires safe products and packaging is an important factor to comply with this consumer right, so developing packaging with antimicrobial properties that protect the product by eliminating or inhibiting bacteria or pathogens that cause damage to health is important in the food industry. The objective of this work was to perform a bibliographic analysis of some additives that generate antimicrobial properties in packaging by reviewing some studies that have developed antimicrobial films or also called smart films. Microbial agents have become an important factor in maintaining food quality over time. Biopolymers are an excellent alternative due to their availability, low cost, biodegradability and their origin are from renewable sources.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 670 ◽  
Author(s):  
Alzagameem ◽  
Klein ◽  
Bergs ◽  
Do ◽  
Korte ◽  
...  

The antiradical and antimicrobial activity of lignin and lignin-based films are both of great interest for applications such as food packaging additives. The polyphenolic structure of lignin in addition to the presence of O-containing functional groups is potentially responsible for these activities. This study used DPPH assays to discuss the antiradical activity of HPMC/lignin and HPMC/lignin/chitosan films. The scavenging activity (SA) of both binary (HPMC/lignin) and ternary (HPMC/lignin/chitosan) systems was affected by the percentage of the added lignin: the 5% addition showed the highest activity and the 30% addition had the lowest. Both scavenging activity and antimicrobial activity are dependent on the biomass source showing the following trend: organosolv of softwood > kraft of softwood > organosolv of grass. Testing the antimicrobial activities of lignins and lignin-containing films showed high antimicrobial activities against Gram-positive and Gram-negative bacteria at 35 °C and at low temperatures (0–7 °C). Purification of kraft lignin has a negative effect on the antimicrobial activity while storage has positive effect. The lignin release in the produced films affected the activity positively and the chitosan addition enhances the activity even more for both Gram-positive and Gram-negative bacteria. Testing the films against spoilage bacteria that grow at low temperatures revealed the activity of the 30% addition on HPMC/L1 film against both B. thermosphacta and P. fluorescens while L5 was active only against B. thermosphacta. In HPMC/lignin/chitosan films, the 5% addition exhibited activity against both B. thermosphacta and P. fluorescens.


2012 ◽  
Vol 75 (12) ◽  
pp. 2234-2237 ◽  
Author(s):  
WEILI LI ◽  
LINSHU LIU ◽  
TONY Z. JIN

We evaluated the effects of storage and handling conditions on the antimicrobial activity of biodegradable composite films (polylactic acid and sugar beet pulp) coated with allyl isothiocyanate (AIT). Polylactic acid and chitosan were incorporated with AIT and used to coat one side of the film. The films were subjected to different storage conditions (storage time, storage temperature, and packed or unpacked) and handling conditions (washing, abrasion, and air blowing), and the antimicrobial activity of the films against Salmonella Stanley in tryptic soy broth was determined. The films (8.16 μl of AIT per cm2 of surface area) significantly (P < 0.05) inhibited the growth of Salmonella during 24 h of incubation at 22°C, while the populations of Salmonella in controls increased from ca. 4 to over 8 log CFU/ml, indicating a minimum inactivation of 4 log CFU/ml on films in comparison to the growth on controls. Statistical analyses indicated that storage time, storage temperature, and surface abrasion affected the antimicrobial activity of the films significantly (P < 0.05). However, the differences in microbial reduction between those conditions were less than 0.5 log cycle. The results suggest that the films' antimicrobial properties are stable under practical storage and handling conditions and that these antimicrobial films have potential applications in food packaging.


2020 ◽  
Author(s):  
Ekaterina A. Kukushkina ◽  
Maria Chiara Sportelli ◽  
Nicoletta Ditaranto ◽  
Rosaria Anna Picca ◽  
Nicola Cioffi

<p>Chitosan (CS), a natural non-toxic polysaccharide, shows intrinsic antimicrobial activity against a wide range of pathogens. CS and CS-based biomaterials can be effective additives in food and medicine-related industries to inhibit growth of pathogens. The application of inorganic nanophases, such as metal and metal oxide nanoparticles, has received attention due to their broad and pronounced antimicrobial activity. Upon combination with CS, which can act as stabilizer, with active inorganic nanophases, robust synergistic nanoantimicrobial (NAM) systems can be produced. These hybrid NAMs offer an alternative strategy to fight antimicrobial resistance and overcome limitations of conventional antibiotics. Bioactive ZnO, Cu and Ag nanophases produced by green electrochemical approach [Nanomaterials, 10(3) (2020), 473] and laser ablation in solution [(Coll. Surf. A, 559 (2018), 148-158), (Food packaging shelf, 22 (2019), 1000422)] can be combined with antimicrobial CS to develop synergistic antimicrobial nanohybrids with amplified biological action. CS-based NAMs were preliminary characterized by electron microscopies and spectroscopic techniques. Hybrid NAMs may find application in the control and inhibition of biofilm growth.</p> <p>Acknowledgements<br />Financial support is acknowledged from European Union’s 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement No. 813439</p>


2022 ◽  
Vol 52 (1) ◽  
pp. 61-65
Author(s):  
Maria Belen Vignola ◽  
Matias Alejandro Raspo ◽  
Cesar Gerardo Gómez ◽  
Alfonsina Ester Andreatta

Interest in the development of films for food preservation is increasing due to the improvement achieved in the food preservation time with the advent of new packaging technologies. Chitosan is a widely used biopolymer produced from the deacetylation of chitin, which has a good capacity to form suitable films as food packages. On the other hand, bioactive compounds such as gallic acid and salicylic acid act as inhibitors of the oxidant activity of free radicals and delay the decomposition of food. In this sense, the preparation of chitosan films modified with the mixture incorporation of salicylic acid/sorbitol or gallic acid/Tween 80 was proposed, using sorbitol or Tween 80 as plasticizers. Both films (chitosan/gallic acid/Tween 80 and chitosan/salicylic acid/sorbitol) showed a good antioxidant capacity in while the chitosan/gallic acid/Tween 80 film evidenced its antimicrobial activity against Escherichia coli ATCC 25922 causing a diminution of unit forming colony


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1556
Author(s):  
Paulina Bednarczyk ◽  
Agnieszka Wróblewska ◽  
Agata Markowska-Szczupak ◽  
Paula Ossowicz-Rupniewska ◽  
Małgorzata Nowak ◽  
...  

This work presents studies on the obtaining of UV-curable coatings with antimicrobial activity. Urethane acrylates (UAs) have excellent physicochemical properties including high reactivity in systems with radical photoinitiators in the presence of UV radiation and good balance between hardness and flexibility in the formed coatings. At the same time, eugenol is well known as the compound hindering the growth of various microorganisms. Hence, the materials obtained by the modification of UA resins with eugenol can be used to protect various surfaces, especially against microorganisms. This study aimed to examine the influence of the amount of eugenol on the chemical, physical, thermal, and mechanical properties of the obtained UA coatings and find the conditions at which the optimal properties for industrial applications such coatings can be achieved. These materials were successfully obtained. Taking into account that eugenol is a very cheap reactant, and it can be obtained from natural sources by the simple distillation method, the proposed method combined the good points of obtaining protective coatings by UV curing with the utilization of vegetable, renewable reactants (biomass), such as components giving special properties to these materials, in this case, antimicrobial properties. In this study, photoreactive coatings with antimicrobial properties for the following microorganisms: fungi (C. albicans), Gram-positive bacteria (S. epidermidis) as well as Gram-negative bacteria (E. coli), were obtained. The obtained coatings were cured over a short time. They were colorless and characterized by a wide range of properties and applications.


2021 ◽  
Vol 9 (1) ◽  
pp. 1-7
Author(s):  
Bibek Adhikari ◽  
Pradeep Kumar Shah ◽  
Roman Karki

A wide range of medicinal plant extracts has phytochemicals that possess antimicrobial properties and these plants are used to treat several infections. The study aimed to assess the antimicrobial activities of some spices extracts and to evaluate the phytochemicals present in them. The extracts of spices were prepared using Soxhlet apparatus refluxing with methanol and ethanol. The well diffusion technique was implemented for the evaluation of antimicrobial activities of the extracts and the zone of inhibitions was recorded in millimeters. The antimicrobial test was done against five bacterial isolates: Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella enterica serotype Typhi, and Staphylococcus aureus and a fungal isolate: Candida albicans. The extracts were concentrated by Rotary Vacuum Evaporator and a stock solution of 200 mg/mL was prepared by dissolving in 10 % DMSO. Concentrations of 40, 60, 80 and 100 mg/mL extracts were used for antimicrobial activity. The result of this study showed that clove extracts had the highest antimicrobial property against all the test microorganisms. Methanolic extract of clove had the highest inhibitory effect against Proteus mirabilis (24.21±0.15 mm), Pseudomonas aeruginosa (19.78±0.23 mm), and Candida albicans (20.07±0.08 mm) whereas ethanolic extract was effective against Escherichia coli (20.44±0.16 mm), Salmonella Typhi (21.66±0.31 mm) and Candida albicans (21.11±0.09 mm). Cinnamon and pepper extracts, leaving some exceptions, also had antimicrobial properties. The presence of phytochemicals: polyphenols, flavonoids, and tannins are the major components responsible for antimicrobial activity. Thereby, this study successfully demonstrated the possibilities of using spices extracts in the treatment of microbial infections.


Sign in / Sign up

Export Citation Format

Share Document