scholarly journals Transcriptome Analysis of Differentially Expressed Genes Related to the Growth and Development of the Jinghai Yellow Chicken

Genes ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 539 ◽  
Author(s):  
Fuxiang Chen ◽  
Pengfei Wu ◽  
Manman Shen ◽  
Mingliang He ◽  
Lan Chen ◽  
...  

The growth traits are important traits in chickens. Compared to white feather broiler breeds, Chinese local broiler breeds have a slow growth rate. The main genes affecting the growth traits of local chickens in China are still unclear and need to be further explored. This experiment used fast-growth and slow-growth groups of the Jinghai Yellow chicken as the research objects. Three males and three females with similar body weights were selected from the two groups at four weeks old and eight weeks old, respectively, with a total of 24 individuals selected. After slaughter, their chest muscles were taken for transcriptome sequencing. In the differentially expressed genes screening, all of the genes obtained were screened by fold change ≥ 2 and false discovery rate (FDR) < 0.05. For four-week-old chickens, a total of 172 differentially expressed genes were screened in males, where there were 68 upregulated genes and 104 downregulated genes in the fast-growth group when compared with the slow-growth group. A total of 31 differentially expressed genes were screened in females, where there were 11 upregulated genes and 20 downregulated genes in the fast-growth group when compared with the slow-growth group. For eight-week-old chickens, a total of 37 differentially expressed genes were screened in males. The fast-growth group had 28 upregulated genes and 9 downregulated genes when compared with the slow-growth group. A total of 44 differentially expressed genes were screened in females. The fast-growth group had 13 upregulated genes and 31 downregulated genes when compared with the slow-growth group. Through gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, many genes were found to be related to cell proliferation and differentiation, muscle growth, and cell division such as SNCG, MCL1, ARNTL, PLPPR4, VAMP1, etc. Real-time PCR results were consistent with the RNA-Seq data and validated the findings. The results of this study will help to understand the regulation mechanism of the growth and development of Jinghai Yellow chicken and provide a theoretical basis for improving the growth rate of Chinese local chicken breeds.

Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2311
Author(s):  
Hao Ding ◽  
Yueyue Lin ◽  
Tao Zhang ◽  
Lan Chen ◽  
Genxi Zhang ◽  
...  

The mechanisms behind the gene expression and regulation that modulate the development and growth of pigeon skeletal muscle remain largely unknown. In this study, we performed gene expression analysis on skeletal muscle samples at different developmental and growth stages using RNA sequencing (RNA−Seq). The differentially expressed genes (DEGs) were identified using edgeR software. Weighted gene co−expression network analysis (WGCNA) was used to identify the gene modules related to the growth and development of pigeon skeletal muscle based on DEGs. A total of 11,311 DEGs were identified. WGCNA aggregated 11,311 DEGs into 12 modules. Black and brown modules were significantly correlated with the 1st and 10th day of skeletal muscle growth, while turquoise and cyan modules were significantly correlated with the 8th and 13th days of skeletal muscle embryonic development. Four mRNA−mRNA regulatory networks corresponding to the four significant modules were constructed and visualised using Cytoscape software. Twenty candidate mRNAs were identified based on their connectivity degrees in the networks, including Abca8b, TCONS−00004461, VWF, OGDH, TGIF1, DKK3, Gfpt1 and RFC5, etc. A KEGG pathway enrichment analysis showed that many pathways were related to the growth and development of pigeon skeletal muscle, including PI3K/AKT/mTOR, AMPK, FAK, and thyroid hormone pathways. Five differentially expressed genes (LAST2, MYPN, DKK3, B4GALT6 and OGDH) in the network were selected, and their expression patterns were quantified by qRT−PCR. The results were consistent with our sequencing results. These findings could enhance our understanding of the gene expression and regulation in the development and growth of pigeon muscle.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaolei Su ◽  
Yinghua Guo ◽  
Tingzheng Fang ◽  
Xuege Jiang ◽  
Dapeng Wang ◽  
...  

Many studies have shown that the space environment plays a pivotal role in changing the characteristics of conditional pathogens, especially their pathogenicity and virulence. However, Stenotrophomonas maltophilia, a type of conditional pathogen that has shown to a gradual increase in clinical morbidity in recent years, has rarely been reported for its impact in space. In this study, S. maltophilia was exposed to a simulated microgravity (SMG) environment in high-aspect ratio rotating-wall vessel bioreactors for 14days, while the control group was exposed to the same bioreactors in a normal gravity (NG) environment. Then, combined phenotypic, genomic, transcriptomic, and proteomic analyses were conducted to compare the influence of the SMG and NG on S. maltophilia. The results showed that S. maltophilia in simulated microgravity displayed an increased growth rate, enhanced biofilm formation ability, increased swimming motility, and metabolic alterations compared with those of S. maltophilia in normal gravity and the original strain of S. maltophilia. Clusters of Orthologous Groups (COG) annotation analysis indicated that the increased growth rate might be related to the upregulation of differentially expressed genes (DEGs) involved in energy metabolism and conversion, secondary metabolite biosynthesis, transport and catabolism, intracellular trafficking, secretion, and vesicular transport. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that the increased motility might be associated the upregulation of differentially expressed proteins (DEPs) involved in locomotion, localization, biological adhesion, and binding, in accordance with the upregulated DEGs in cell motility according to COG classification, including pilP, pilM, flgE, flgG, and ronN. Additionally, the increased biofilm formation ability might be associated with the upregulation of DEPs involved in biofilm formation, the bacterial secretion system, biological adhesion, and cell adhesion, which were shown to be regulated by the differentially expressed genes (chpB, chpC, rpoN, pilA, pilG, pilH, and pilJ) through the integration of transcriptomic and proteomic analyses. These results suggested that simulated microgravity might increase the level of corresponding functional proteins by upregulating related genes to alter physiological characteristics and modulate growth rate, motility, biofilm formation, and metabolism. In conclusion, this study is the first general analysis of the phenotypic, genomic, transcriptomic, and proteomic changes in S. maltophilia under simulated microgravity and provides some suggestions for future studies of space microbiology.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Arun Sudhagar ◽  
Reinhard Ertl ◽  
Gokhlesh Kumar ◽  
Mansour El-Matbouli

Abstract Background Tetracapsuloides bryosalmonae is a myxozoan parasite which causes economically important and emerging proliferative kidney disease (PKD) in salmonids. Brown trout, Salmo trutta is a native fish species of Europe, which acts as asymptomatic carriers for T. bryosalmonae. There is only limited information on the molecular mechanism involved in the kidney of brown trout during T. bryosalmonae development. We employed RNA sequencing (RNA-seq) to investigate the global transcriptome changes in the posterior kidney of brown trout during T. bryosalmonae development. Methods Brown trout were exposed to the spores of T. bryosalmonae and posterior kidneys were collected from both exposed and unexposed control fish. cDNA libraries were prepared from the posterior kidney and sequenced. Bioinformatics analysis was performed using standard pipeline of quality control, reference mapping, differential expression analysis, gene ontology, and pathway analysis. Quantitative real time PCR was performed to validate the transcriptional regulation of differentially expressed genes, and their correlation with RNA-seq data was statistically analyzed. Results Transcriptome analysis identified 1169 differentially expressed genes in the posterior kidney of brown trout, out of which 864 genes (74%) were upregulated and 305 genes (26%) were downregulated. The upregulated genes were associated with the regulation of immune system process, vesicle-mediated transport, leucocyte activation, and transport, whereas the downregulated genes were associated with endopeptidase regulatory activity, phosphatidylcholine biosynthetic process, connective tissue development, and collagen catabolic process. Conclusion To our knowledge, this is the first RNA-seq based transcriptome study performed in the posterior kidney of brown trout during active T. bryosalmonae development. Most of the upregulated genes were associated with the immune system process, whereas the downregulated genes were associated with other metabolic functions. The findings of this study provide insights on the immune responses mounted by the brown trout on the developing parasite, and the host molecular machineries modulated by the parasite for its successful multiplication and release.


2008 ◽  
Vol 2008 ◽  
pp. 1-12 ◽  
Author(s):  
Zhenyu Jia ◽  
Shizhong Xu

Control-treatment design is widely used in microarray gene expression experiments. The purpose of such a design is to detect genes that express differentially between the control and the treatment. Many statistical procedures have been developed to detect differentially expressed genes, but all have pros and cons and room is still open for improvement. In this study, we propose a Bayesian mixture model approach to classifying genes into one of three clusters, corresponding to clusters of downregulated, neutral, and upregulated genes, respectively. The Bayesian method is implemented via the Markov chain Monte Carlo (MCMC) algorithm. The cluster means of down- and upregulated genes are sampled from truncated normal distributions whereas the cluster mean of the neutral genes is set to zero. Using simulated data as well as data from a real microarray experiment, we demonstrate that the new method outperforms all methods commonly used in differential expression analysis.


2007 ◽  
Vol 124-126 ◽  
pp. 539-542
Author(s):  
Eui Tae Kim ◽  
Anupam Madhukar

We discuss the growth kinetics of InAs/GaAs self-assembled quantum dots (QDs) using two different InAs deposition rates, relatively fast growth rate of 0.22 ML/sec and slow growth rate of 0.054 ML/sec. With increasing InAs deposition amount to 3.0 ML, the QD density was almost constant after 2D to 3D island transition at the slow deposition rate while the QD density kept increasing and the QD size distribution was relatively broad at the fast growth rate. After the 2D to 3D transition, at the slow growth rate, further deposited In adatoms seemed to incorporate primarily into already formed islands, and thus contribute to equalize island size. The photoluminescence (PL) full-width at half maximum (FWHM) of 2.5 ML InAs QDs at 0.054 ML/sec was 23 meV at 78K. The PL characteristics of InAs/GaAs QDs were degraded significantly after thermal annealing at 550 oC for 3 hours.


Author(s):  
Jing Wang ◽  
Yuan-wei Zhang ◽  
Nian-jie Zhang ◽  
Shuo Yin ◽  
Du-ji Ruan ◽  
...  

Recently, the effect of endocrine-disrupting chemicals on the cancer procession has been a concern. Nonylphenol (NP) is a common environmental estrogen that has been shown to enhance the proliferation of colorectal cancer (CRC) cells in our previous studies; however, the underlying mechanism remains unclear. In this study, we confirmed the increased concentration of NP in the serum of patients with CRC. RNA sequencing was used to explore the differentially expressed genes after NP exposure. We found 16 upregulated genes and 12 downregulated genes in COLO205 cells after NP treatment. Among these differentially expressed genes, we found that coiled-coil domain containing 80 (CCDC80) was downregulated by NP treatment and was associated with CRC progression. Further experiments revealed that the overexpression of CCDC80 significantly suppressed NP-induced cell proliferation and recovered the reduced cell apoptosis. Meanwhile, the overexpression of CCDC80 significantly inhibited the activation of ERK1/2 induced by NP treatment. ERK1/2 inhibitor (PD98059) treatment also suppressed NP-induced CRC cell growth, but the overexpression of CCDC80 did not enhance the effect of ERK1/2 inhibitor. Taken together, NP treatment significantly inhibited the expression of CCDC80, and the overexpression of CCDC80 suppressed NP-induced CRC cell growth by inhibiting the activation of ERK1/2. These results suggest that NP could induce CRC cell growth by influencing the expression of multiple genes. CCDC80 and ERK1/2 inhibitors may be suitable therapeutic targets in NP-related CRC progression.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Huanzhi Ma ◽  
Wei Zhang ◽  
Jun Shi

Osteonecrosis is one of the most refractory orthopedic diseases, which seriously threatens the health of old patients. High-throughput sequencing (HTS) and microarray analysis have confirmed as an effective way for investigating the pathological mechanism of disease. In this study, GSE7716, GSE74089, and GSE123568 were obtained from Gene Expression Omnibus (GEO) database and used to identify differentially expressed genes (DEGs) by R language. Subsequently, the DEGs were analyzed with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. Moreover, the protein-protein interaction (PPI) network of DEGs was analyzed by STRING database and Cytoscape. The results showed that 318 downregulated genes and 58 upregulated genes were observed in GSE7116; 690 downregulated genes and 1148 upregulated genes were screened from 34183 genes in GSE74089. The DEGs involved in progression of osteonecrosis involved inflammation, immunological rejection, and bacterial infection-related pathways. The GO enrichment showed that osteonecrosis was related with extracellular matrix, external encapsulating structure organization, skeletal system development, immune response activity, cell apoptosis, mononuclear cell differentiation, and serine/threonine kinase activity. Moreover, PPI network showed that the progression of osteonecrosis of the femoral head was related with CCND1, CDH1, ESR1, SPP1, LOX, JUN, ITGA, ABL1, and VEGF, and osteonecrosis of the jaw is related with ACTB, CXCR4, PTPRC, IL1B, CXCL8, TNF, JUN, PTGS2, FOS, and RHOA. In conclusion, this study identified the hub factors and pathways which might play important roles in progression of osteonecrosis and could be used as potential biomarkers for diagnosis and treatment of osteonecrosis.


2020 ◽  
Author(s):  
Xiaowen Chen ◽  
Xin Hou ◽  
Zhihua Li ◽  
Deyin Lu ◽  
Jun Wang ◽  
...  

Abstract Aquatic plants and freshwater snails are important natural food sources of Eriocheir sinensis. The effects of these two kinds of natural food sources on the growth and development of Eriocheir sinensis were studied by determining the hepatopancreatic proteomes of three crab groups, namely, crabs fed with aquatic plants combined with freshwater snails (group A), crabs fed with aquatic plants only (group B), and crabs fed with freshwater snails only (group C), with tandem mass tag technology. Results showed 110 differentially expressed proteins between groups A and B, among which 78 were up-regulated and 32 were down-regulated in group A. Meanwhile, 9 proteins were up-regulated and 14 proteins were down-regulated in group A relative to those in group C. The proteins related to molting and growth that were differentially expressed between groups A and B were up-regulated in group A. These proteins included cryptocyanin and cuticle protein CBM. The immunity-related proteins, such as mannosyl-oligosaccharide glucosidase and glutathione peroxidase, that were differentially expressed between groups A and C and were up-regulated in group A. These results indicated that freshwater snails might promote the growth and development of E. sinensis to a certain extent, and aquatic plants might play an important role in the immunity of E. sinensis. Our study provides a theoretical basis for the practice of “planting grass and throwing snails” in the green ecological culture of E. sinensis.


2020 ◽  
Author(s):  
Wei Han ◽  
Guo-liang Shen

Abstract Background: Skin Cutaneous Melanoma (SKCM) is known as an aggressive malignant cancer, which could be directly derived from melanocytic nevi. However, the molecular mechanisms underlying malignant transformation of melanocytes and melanoma tumor progression still remain unclear. Increasing researches showed significant roles of epigenetic modifications, especially DNA methylation, in melanoma. This study focused on identification and analysis of methylation-regulated differentially expressed genes (MeDEGs) between melanocytic nevus and malignant melanoma in genome-wide profiles. Methods: The gene expression profiling datasets (GSE3189 and GSE114445) and gene methylation profiling datasets (GSE86355 and GSE120878) were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and differentially methylated genes (DMGs) were identified via GEO2R. MeDEGs were obtained by integrating the DEGs and DMGs. Then, functional enrichment analysis of MeDEGs were performed. STRING and Cytoscape were used to describe protein-protein interaction(PPI) network. Furthermore, survival analysis was implemented to select the prognostic hub genes. Finally, we conducted gene set enrichment analysis (GSEA) of hub genes. Results: We identified 237 hypomethylated, upregulated genes and 182 hypermethylated, downregulated genes. Hypomethylation-upregulated genes were enriched in biological processes of the oxidation-reduction process, cell proliferation, cell division, phosphorylation, extracellular matrix disassembly and protein sumoylation. Pathway enrichment showed selenocompound metabolism, small cell lung cancer and lysosome. Hypermethylation-downregulated genes were enriched in biological processes of positive regulation of transcription from RNA polymerase II promoter, cell adhesion, cell proliferation, positive regulation of transcription, DNA-templated and angiogenesis. The most significantly enriched pathways involved the transcriptional misregulation in cancer, circadian rhythm, tight junction, protein digestion and absorption and Hippo signaling pathway. After PPI establishment and survival analysis, seven prognostic hub genes were CKS2, DTL, KIF2C, KPNA2, MYBL2, TPX2 and FBL. Moreover, the most involved hallmarks obtained by GSEA were E2F targets, G2M checkpoint and mitotic spindle. Conclusions: Our study identified potential aberrantly methylated-differentially expressed genes participating in the process of malignant transformation from nevus to melanoma tissues based on comprehensive genomic profiles. Transcription profiles of CKS2, DTL, KIF2C, KPNA2, MYBL2, TPX2 and FBL provided clues of aberrantly methylation-based biomarkers, which might improve the development of precise medicine.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2435-2435
Author(s):  
Delphine Rossille ◽  
Céline Pangault ◽  
Xavier Cahu ◽  
Thierry Lamy ◽  
Burgun Anita ◽  
...  

Abstract Abstract 2435 DLBCLs are the most prevalent lymphomas in adults and great advances have been made in understanding molecular effects on tumor cells as well as tissue environment, leading to determining gene prognosis signatures using transcriptional profiling techniques. As blood cells interact with cells in almost all tissues in the body, blood-derived total RNA gene expressions have been investigated for the past years including for solid cancers [Clin Cancer Res. 2006:3374.], infections [Nature 2010;446:973.] and autoimmune disorders [Genes Immun. 2010;11:269., Immunity 2008;29:150.]. Blood-based microarray approaches were able to identify differentially expressed genes distinguishing patients from healthy volunteers. Interested in the potential of this noninvasive and easy-to-use technique, we hypothesized that aggressive DLBCLs at diagnosis cause molecular perturbations on the whole blood allowing identifying gene expression differentiation compared to healthy controls. Whole blood was collected into PAXgene™ Blood RNA tubes ensuring blood stabilization and sent within 24 hours to be stored at −80°C before extraction. Our study involved high-quality RNA samples from 75 DLBCL patients taken at diagnosis prior to any anti-cancer treatment and 87 healthy volunteers, sex and gender matched. All patients were less than 60 and enrolled in a multicentric & prospective clinical trial for aggressive form of DLBCL, GOELAMS 075, which compares the autologous stem cell treatment to regular R-CHOP procedure. The median age was 52 for patients and 48 for controls. Gene expression profiling (GEP) was assessed using Affymetrix GeneChip® Human Exon 1.0 ST arrays. Unsupervised hierarchical clustering analysis (HCA) distinguished DLBCLs from controls. Two gene lists were identified based on HCA (Figure 1): listA consisted in 3,323 upregulated genes for a subgroup of patients and inversely, listB in 2,966 upregulated genes for controls. Canonical pathways were generated for both lists for genes meeting p<5% and FC >1.2 through the use of IPA (Ingenuity® Systems). The upregulated genes for patients (listA) were found associated with cytokine signaling pathways (Interleukins, NF-κB) while the down-regulated genes (listB) were implicated in T lymphocytes signaling pathways. Further investigations of the dataset by univariate analysis (Mann-Whitney test, FDR<5%, FC >1.5) found 1047 differentially expressed genes, confirming the systemic alteration. A set of 20 genes, selected as the best predictive genes for which the misclassification error rate is minimal, was able to discriminate DLBCLs from control samples (sensitivity= 88% & specificity=95%). No correlation was found between genes and biological parameters such as hemoglobin, leucocytes, lymphocytes, platelets or polynuclear neutrophils. The down-regulated genes were located in the nucleus and involved in transcription deregulation, DNA repair and apoptosis. Upregulated genes were related to the immune response as well as the inflammatory response with for instance S100 proteins which are implicated in myeloid-derived suppressor cell biology. Conclusion: Despite the complex mixture of cell types in blood, whole blood has shown strong systemic perturbations in DLBCLs at diagnosis. Biological investigation indicated an over-expression of the inflammation and immune responses combined to perturbations of the T-lymphocyte pattern. Our findings concerning inflammation-related gene expression including NF-κB activation and upregulated cytokine transcripts, with for instance IL-1, IL-6 & IL-10, invite us to determine whether a specific DLBCL-induced inflammation process exists compared to other nonmalignant diseases [Clin Microbiol Rev. 2002 Jul; 15(3):414-29]. Comparison to other lymphoma and inflammatory diseases as well as with tumor status are under way allowing to better characterizing DLBCL-specific biomarkers. These results shed new lights on DLBCL biology deciphering disease's heterogeneity at the RNA whole blood level. They encourage us to investigate whole blood GEP for prognosis and as a new parameter useful for disease classification. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document