scholarly journals A Soluble Humic Substance for the Simultaneous Removal of Cadmium and Arsenic from Contaminated Soils

Author(s):  
Dongxue Bi ◽  
Guodong Yuan ◽  
Jing Wei ◽  
Liang Xiao ◽  
Lirong Feng ◽  
...  

With abundant oxygen-containing functional groups, a humic substance (HS) has a high potential to remediate soils contaminated by heavy metals. Here, HS was first extracted from a leonardite and analyzed for its chemical compositions and spectroscopic characteristics. Then it was assessed for its ability as a washing agent to remove Cd and As from three types of soils (red soil, black soil, and fluvo-aquic soil) that were spiked with those contaminants (Cd: 40.5–49.1 mg/kg; As: 451–584 mg/kg). The operational washing conditions, including the pH and concentration of the HS, washing time and cycles, and liquid–soil ratio, were assessed for Cd and As removal efficiency. At pH 7, with an HS concentration (3672 mg C/L) higher than its critical micelle concentration and a liquid–soil ratio of 30, a single washing for 6–12 h removed 41.9 mg Cd/kg and 199.3 mg As/kg from red soil, 33.5 mg Cd/kg and 291.5 mg As/kg from black soil, and 30.4 mg Cd/kg and 325.5 mg As/kg from fluvo-aquic soil. The removal of Cd and As from the contaminated soils involved the complexation of Cd and As with the carboxyl and phenolic groups of HS. Outcomes from this research could be used to develop a tailor-made HS washing agent for the remediation of Cd- and As-contaminated soils with different properties.

Author(s):  
Kanghee Cho ◽  
Eunji Myung ◽  
Hyunsoo Kim ◽  
Cheonyoung Park ◽  
Nagchoul Choi ◽  
...  

In this study, we investigated the feasibility of using a solution of sulfuric acid and phosphoric acid as an extraction method for soil-washing to remove Cu, Pb, Zn, and As from contaminated soil. We treated various soil particles, including seven fraction sizes, using sulfuric acid. In addition, to improve Cu, Pb, Zn, and As removal efficiencies, washing agents were compared through batch experiments. The results showed that each agent behaved differently when reacting with heavy metals (Cu, Pb, and Zn) and As. Sulfuric acid was more effective in extracting heavy metals than in extracting As. However, phosphoric acid was not effective in extracting heavy metals. Compared with each inorganic acid, As removal from soil by washing agents increased in the order of sulfuric acid (35.81%) < phosphoric acid (62.96%). Therefore, an enhanced mixture solution using sulfuric acid and phosphoric acid to simultaneously remove heavy metals and As from contaminated soils was investigated. Sulfuric acid at 0.6 M was adopted to combine with 0.6 M phosphoric acid to obtain the mixture solution (1:1) that was used to determine the effect for the simultaneous removal of both heavy metals and As from the contaminated soil. The removal efficiencies of As, Cu, Pb, and Zn were 70.5%, 79.6%, 80.1%, and 71.2%, respectively. The combination of sulfuric acid with phosphoric acid increased the overall As and heavy metal extraction efficiencies from the contaminated soil samples. With the combined effect of dissolving oxides and ion exchange under combined washings, the removal efficiencies of heavy metals and As were higher than those of single washings.


2013 ◽  
Vol 448-453 ◽  
pp. 417-424
Author(s):  
Jie Chen ◽  
You Yang Wang ◽  
Jun Hui Wu ◽  
Hui Ping Si ◽  
Kai Yan Lin

This article discusses biochar adsorption and its effects on soil and discusses the future trends in this area. The large surface area, and many oxygen-containing functional groups of biochar determined by the feedstocks and the condition in pyrolysis affect the capacity of biochar to adsorb fertilizer, water, heavy metals and organic pollution. With enriched porous structures, biachar can increase the porosity and water retention capacity of soils. With the functional groups and the composition, biochar have a high adsorption capacity for fertilizer, heavy metals, organic pollutants. This paper provides an overview on the biochar sorption in fertilizer, heavy metals and organic pollutants in soil and its implication for soil to keep soil fertilizer as a controlled-released carrier and to improve soil environments as landscaping organic mulch, as well as for remediation of contaminated soils. Further research directions are identified to ensure a safe and sustainable use of biochar as a soil amendment.


2018 ◽  
Vol 2 (1) ◽  
pp. 39-46 ◽  
Author(s):  
Lali Kutateladze ◽  
Nino Zakariashvili ◽  
Izolda Khokhashvili ◽  
Maya Jobava ◽  
Tinatin Alexidze ◽  
...  

Abstract The analysis of microscopic fungi collection created at theDurmishidze Institute of Biochemistry and Biotechnology revealed 107 strains assimilating 2,4,6-TNT (2,4,6-trinitrotoluene) belonging to the different fungal genera. The strains have been isolated from the polluted areas adjacent to the military grounds and industrial waste waters. It has been shown TNT is degraded most actively by strains belonging to the following genera: Trichoderma, Aspergillus, Mucor and Trichoderma. Optimal cultivation conditions for highly active strains -the destructors of TNT have been revealed. It has been established that the carbon skeleton of TNT being utilized by the mentioned strains undergoes biotransformation. The existence of radioactive intermediates of biotransformation, organic acids (70-90%) and amino acids (10-30%) have been detected in liquid culture. Radioactive label of 1-14C-TNT is mostly found in fumaric acid, which is known as one of the main products of benzene biotransformation and further conversion into succinic acid. Remediation level of TNT-contaminated red and black soils treated by the most active strains Aspergillus nigerN2-2 and Mucor sp. T1-1 have been studied under laboratory and field conditions. Cultivation of the above mentioned strains under laboratory conditions in sterile, black and red soils for 30 days at 30°C allowed decreasing the content of TNT in black soil to the residual, and in red soil - to 15%; cultivation of Aspergillus niger N2-2 decreased the amount of TNT in black soil to 11 and in red soil - to 21%. Under field conditions, TNT degradation level in contaminated soils by naturally existing micro flora during 100 days was equal to 40-50%, and in the case of additional introduction of both fungal strains, TNT-destructors reached 80%.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1339 ◽  
Author(s):  
Wei ◽  
Liu ◽  
Routh ◽  
Tang ◽  
Liu ◽  
...  

The release of heavy metals and metalloids (HMs), including Pb, Zn, Cd, As, and Cu, from two typical contaminated soils with different properties, namely red soil and limestone-dominated soil, was characterized through simulated-rainfall experiments in order to investigate the effects of soil properties on HM release. Significant differences in the HM concentrations between the two soils resulted in various concentrations of dissolved and particulate HMs in the runoff. Differences in the dissolved HM concentrations in the runoff were inconsistent with the HM concentrations in the soils, which is attributed to the variable solubilities of HMs in the two soils. However, the HM enrichment ratios were not significantly different. The strong correlation between dissolved organic carbon and dissolved HMs in the runoff, and between the total organic carbon and particulate HMs in sediments, were observed, especially in the limestone-dominated soil. The specific surface area and HM concentrations in sediments were weakly correlated. Acid-rainfall experiments showed that only the limestone-dominated soil buffered the effects of acid rain on the runoff; the concentrations of dissolved Pb, Zn, Cd, and Cu increased in the red soil under acid rainfall and were 60, 29, 25, and 19 times higher, respectively, than under the neutral conditions. The results contribute to the understanding of HM behavior in the two typical soils in southern China, exposed to frequent storms that are often dominated by acid rainfall.


2020 ◽  
Vol 57 (2) ◽  
pp. 109-114
Author(s):  
Amirhossein Dolatzadeh khiyavi ◽  
Reza Hajimohammadi ◽  
Hossein Amani ◽  
Hadi Soltani

2021 ◽  
Vol 11 (15) ◽  
pp. 7099
Author(s):  
Inkyeong Moon ◽  
Honghyun Kim ◽  
Sangjo Jeong ◽  
Hyungjin Choi ◽  
Jungtae Park ◽  
...  

In this study, the geochemical properties of heavy metal-contaminated soils from a Korean military shooting range were analyzed. The chemical behavior of heavy metals was determined by analyzing the soil pH, heavy metal concentration, mineral composition, and Pb isotopes. In total, 24 soil samples were collected from a Korean military shooting range. The soil samples consist of quartz, albite, microcline, muscovite/illite, kaolinite, chlorite, and calcite. Lead minerals, such as hydrocerussite and anglesite, which are indicative of a transformation into secondary mineral phases, were not observed. All soils were strongly contaminated with Pb with minor concentrations of Cu, Ni, Cd, and Zn. Arsenic was rarely detected. The obtained results are indicated that the soils from the shooting range are contaminated with heavy metals and have evidences of different degree of anthropogenic Pb sources. This study is crucial for the evaluation of heavy metal-contaminated soils in shooting ranges and their environmental effect as well as for the establishment of management strategies for the mitigation of environmental risks.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 448
Author(s):  
Mahrous Awad ◽  
Zhongzhen Liu ◽  
Milan Skalicky ◽  
Eldessoky S. Dessoky ◽  
Marian Brestic ◽  
...  

Heavy metals (HMs) toxicity represents a global problem depending on the soil environment’s geochemical forms. Biochar addition safely reduces HMs mobile forms, thus, reducing their toxicity to plants. While several studies have shown that biochar could significantly stabilize HMs in contaminated soils, the study of the relationship of soil properties to potential mechanisms still needs further clarification; hence the importance of assessing a naturally contaminated soil amended, in this case with Paulownia biochar (PB) and Bamboo biochar (BB) to fractionate Pb, Cd, Zn, and Cu using short sequential fractionation plans. The relationship of soil pH and organic matter and its effect on the redistribution of these metals were estimated. The results indicated that the acid-soluble metals decreased while the fraction bound to organic matter increased compared to untreated pots. The increase in the organic matter metal-bound was mostly at the expense of the decrease in the acid extractable and Fe/Mn bound ones. The highest application of PB increased the organically bound fraction of Pb, Cd, Zn, and Cu (62, 61, 34, and 61%, respectively), while the BB increased them (61, 49, 42, and 22%, respectively) over the control. Meanwhile, Fe/Mn oxides bound represents the large portion associated with zinc and copper. Concerning soil organic matter (SOM) and soil pH, as potential tools to reduce the risk of the target metals, a significant positive correlation was observed with acid-soluble extractable metal, while a negative correlation was obtained with organic matter-bound metal. The principal component analysis (PCA) shows that the total variance represents 89.7% for the TCPL-extractable and HMs forms and their relation to pH and SOM, which confirms the positive effect of the pH and SOM under PB and BB treatments on reducing the risk of the studied metals. The mobility and bioavailability of these metals and their geochemical forms widely varied according to pH, soil organic matter, biochar types, and application rates. As an environmentally friendly and economical material, biochar emphasizes its importance as a tool that makes the soil more suitable for safe cultivation in the short term and its long-term sustainability. This study proves that it reduces the mobility of HMs, their environmental risks and contributes to food safety. It also confirms that performing more controlled experiments, such as a pot, is a disciplined and effective way to assess the suitability of different types of biochar as soil modifications to restore HMs contaminated soil via controlling the mobilization of these minerals.


2019 ◽  
Vol 322 (2) ◽  
pp. 1085-1096
Author(s):  
Hui Zhang ◽  
Wenting Yu ◽  
Zhifen Wang ◽  
Mingbiao Luo ◽  
Shujuan Liu ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (4) ◽  
pp. 1799
Author(s):  
Claudio Cameselle ◽  
Susana Gouveia ◽  
Adrian Cabo

The electrokinetic remediation of an agricultural soil contaminated with heavy metals was studied using organic acids as facilitating agents. The unenhanced electrokinetic treatment using deionized water as processing fluid did not show any significant mobilization and removal of heavy metals due to the low solubilization of metals and precipitation at high pH conditions close to the cathode. EDTA and citric acid 0.1 M were used as facilitating agents to favor the dissolution and transportation of metals. The organic acids were added to the catholyte and penetrated into the soil specimen by electromigration. EDTA formed negatively charged complexes. Citric acid formed neutral metal complexes in the soil pH conditions (pH = 2–4). Citric acid was much more effective in the dissolution and transportation out of the soil specimen of complexed metals. In order to enhance the removal of metals, the concentration of citric acid was increased up to 0.5 M, resulting in the removal of 78.7% of Cd, 78.6% of Co, 72.5% of Cu, 73.3% of Zn, 11.8% of Cr and 9.8% of Pb.


Sign in / Sign up

Export Citation Format

Share Document