scholarly journals IBTK Haploinsufficiency Affects the Tumor Microenvironment of Myc-Driven Lymphoma in E-myc Mice

2020 ◽  
Vol 21 (3) ◽  
pp. 885 ◽  
Author(s):  
Eleonora Vecchio ◽  
Giuseppe Fiume ◽  
Chiara Mignogna ◽  
Enrico Iaccino ◽  
Selena Mimmi ◽  
...  

The tumor microenvironment is a dynamic and interactive supporting network of various components, including blood vessels, cytokines, chemokines, and immune cells, which sustain the tumor cell’s survival and growth. Murine models of lymphoma are useful to study tumor biology, the microenvironment, and mechanisms of response to therapy. Lymphomas are heterogeneous hematologic malignancies, and the complex microenvironment from which they arise and their multifaceted genetic basis represents a challenge for the generation and use of an appropriate murine model. So, it is important to choose the correct methodology. Recently, we supported the first evidence on the pro-oncogenic action of IBTK in Myc-driven B cell lymphomagenesis in mice, inhibiting apoptosis in the pre-cancerous stage. We used the transgenic Eμ-myc mouse model of non-Hodgkin’s lymphoma and Ibtk hemizygous mice to evaluate the tumor development of Myc-driven lymphoma. Here, we report that the allelic loss of Ibtk alters the immunophenotype of Myc-driven B cell lymphomas, increasing the rate of pre-B cells and affecting the tumor microenvironment in Eμ-myc mice. In particular, we observed enhanced tumor angiogenesis, increasing pro-angiogenic and lymphangiogenic factors, such as VEGF, MMP-9, CCL2, and VEGFD, and a significant recruitment of tumor-associated macrophages in lymphomas of Ibtk+/- Eμ-myc compared to Ibtk+/+ Eμ-myc mice. In summary, these results indicate that IBTK haploinsufficiency promotes Myc tumor development by modifying the tumor microenvironment.

Author(s):  
Stephen M. Ansell ◽  
Robert H. Vonderheide

In addition to malignant cells, the tumor microenvironment also includes nonmalignant cells, secreted proteins, and blood vessels that surround and support the growth of the tumor. Interactions between the various components of the tumor microenvironment are significant; tumor cells can change the nature of the microenvironment, and conversely, the microenvironment can affect how a tumor grows and spreads. The structure and composition of the tumor microenvironment varies among different types of cancers and between patients. This paper focuses on the composition and function of the tumor microenvironment in hematologic malignancies with a specific focus on B-cell lymphomas.


2021 ◽  
Vol 22 (18) ◽  
pp. 9804
Author(s):  
Pedro Bule ◽  
Sandra I. Aguiar ◽  
Frederico Aires-Da-Silva ◽  
Joana N. R. Dias

Chemokines are a large family of small chemotactic cytokines that coordinates immune cell trafficking. In cancer, they have a pivotal role in the migration pattern of immune cells into the tumor, thereby shaping the tumor microenvironment immune profile, often towards a pro-tumorigenic state. Furthermore, chemokines can directly target non-immune cells in the tumor microenvironment, including cancer, stromal and vascular endothelial cells. As such, chemokines participate in several cancer development processes such as angiogenesis, metastasis, cancer cell proliferation, stemness and invasiveness, and are therefore key determinants of disease progression, with a strong influence in patient prognosis and response to therapy. Due to their multifaceted role in the tumor immune response and tumor biology, the chemokine network has emerged as a potential immunotherapy target. Under the present review, we provide a general overview of chemokine effects on several tumoral processes, as well as a description of the currently available chemokine-directed therapies, highlighting their potential both as monotherapy or in combination with standard chemotherapy or other immunotherapies. Finally, we discuss the most critical challenges and prospects of developing targeted chemokines as therapeutic options.


2021 ◽  
Vol 11 ◽  
Author(s):  
Sudhir Perincheri

Lymphomas and plasma cell neoplasms are a heterogenous group of malignancies derived from lymphocytes. They are a significant cause of patient morbidity and mortality. Advances in morphologic, immunophenotypic and molecular techniques have led to better understanding of the pathogenesis and diagnosis of these neoplasms. Advances in treatment, particularly immune-based therapies, increasingly allow for targeted therapies of these diseases. Mechanistic studies using animal models and clinical trials have revealed the importance of the tumor microenvironment on disease pathogenesis, progression, and response to therapy in these malignancies. Simultaneous progress in diagnostic techniques has made it feasible to generate high-resolution, high-throughput data from the tumor microenvironment with spatial context. As the armamentarium of targeted therapies and diagnostic techniques grows, there is potential to harness these advances to better stratify patients for targeted therapies, including immune-based therapies, in hematologic malignancies.


2019 ◽  
Vol 20 (17) ◽  
pp. 4320 ◽  
Author(s):  
Buoncervello ◽  
Gabriele ◽  
Toschi

The tumor microenvironment (TME) is a complex entity where host immune and non-immune cells establish a dynamic crosstalk with cancer cells. Through cell-cell interactions, which are mediated by key signals, such as the PD-1/PD-L1 axis, as well as the release of soluble mediators, this articulated process defines the nature of TME determining tumor development, prognosis, and response to therapy. Specifically, tumors are characterized by cellular plasticity that allows for the microenvironment to polarize towards inflammation or immunosuppression. Thus, the dynamic crosstalk among cancer, stromal, and immune components crucially favors the dominance of one of the Janus-faced contexture of TME crucial to the outcome of tumor development and therapeutic response. However, mostly, TME is dominated by an immunosuppressive landscape that blocks antitumor immunity and sustain tumor progression. Hence, in most cases, the immunosuppressive components of TME are highly competent in suppressing tumor-specific CD8+ T lymphocytes, the effectors of cancer destruction. In this complex context, immunotherapy aims to arm the hidden Janus face of TME disclosing and potentiating antitumor immune signals. Herein, we discuss recent knowledge on the immunosuppressive crosstalk within TME, and share perspectives on how immunotherapeutic approaches may exploit tumor immune signals to generate antitumor immunity.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3494
Author(s):  
Ana S. Dias ◽  
Luisa Helguero ◽  
Catarina R. Almeida ◽  
Iola F. Duarte

The tumor microenvironment (TME) is a heterogenous assemblage of malignant and non-malignant cells, including infiltrating immune cells and other stromal cells, together with extracellular matrix and a variety of soluble factors. This complex and dynamic milieu strongly affects tumor differentiation, progression, immune evasion, and response to therapy, thus being an important therapeutic target. The phenotypic and functional features of the various cell types present in the TME are largely dependent on their ability to adopt different metabolic programs. Hence, modulating the metabolism of the cells in the TME, and their metabolic crosstalk, has emerged as a promising strategy in the context of anticancer therapies. Natural compounds offer an attractive tool in this respect as their multiple biological activities can potentially be harnessed to ‘(re)-educate’ TME cells towards antitumoral roles. The present review discusses how natural compounds shape the metabolism of stromal cells in the TME and how this may impact tumor development and progression.


2017 ◽  
Vol 23 (32) ◽  
pp. 4893-4905 ◽  
Author(s):  
Elena Voronov ◽  
Ron N. Apte

The importance of anti-tumor immunity in the outcome of cancer is now unequivocally established and recent achivements in the field have stimulated the development of new immunotherapeutical approaches. In invasive tumors, widespread inflammation promotes invasiveness and concomitantly also inhibits anti-tumor immune responses. We suggest that efficient tumor treatment should target both the malignant cells and the tumor microenvironment. Interleukin-1 (IL-1) is a pro-inflammatory as well as an immunostimulatory cytokine that is abundant in the tumor microenvironment. Manipulation of IL-1 can thus serve as an immunotherapeutical approach to reduce inflammation/immunosuppression and thus enhance anti-tumor immunity. The two major IL-1 agonistic molecules are IL-1α and IL-1β, which bind to the same IL-1 signaling receptor and induce the same array of biological activities. The IL-1 receptor antagonist (IL-Ra) is a physiological inhibitor of IL-1 that binds to its receptor without transmition of activation signals and thus serves as a decoy target. We have demonstrated that IL-1α and IL-1β are different in terms of the producing cells and their compartmentalization and the amount. IL-1α is mainly expressed intracellularly, in the cytosol, in the nucleus or exposed on the cell membrane, however, it is rarely secreted. IL-1β is active only as a secreted molecule that is mainly produced by activated myeloid cells. We have shown different functions of IL-1α and IL-1β in the malignant process. Thus, in its membrane- associated form, IL-1α is mainly immunostimulatory, while IL-1β that is secreted into the tumor microenvironment is mainly pro-inflammatory and promotes tumorigenesis, tumor invasiveness and immunosuppression. These distinct functions of the IL-1 agonistic molecules are mainly manifested in early stages of tumor development and the patterns of their expression dictate the direction of the malignant process. Here, we suggest that IL-1 modulation can serve as an effective mean to tilt the balance between inflammation and immunity in tumor sites, towards the latter. Different agents that neutralize IL-1, mainly the IL-Ra and specific antibodies, exist. They are safe and FDA-approved. The IL-1Ra has been widely and successfully used in patients with Rheumatoid arthritis, autoinflammatory diseases and various other diseases that have an inflammatory component. Here, we provide the rationale and experimental evidence for the use of anti-IL-1 agents in cancer patients, following first line therapy to debulk the major tumor's mass. The considerations and constraints of using anti-IL-1 treatments in cancer are also discussed. We hope that this review will stimulate studies that will fasten the application of IL-1 neutralization at the bedside of cancer patients.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1333
Author(s):  
Jana Gregorova ◽  
Petra Vychytilova-Faltejskova ◽  
Sabina Sevcikova

MicroRNAs are small non-coding single-stranded RNA molecules regulating gene expression on a posttranscriptional level based on the seed sequence similarity. They are frequently clustered; thus, they are either simultaneously transcribed into a single polycistronic transcript or they may be transcribed independently. Importantly, microRNA families that contain the same seed region and thus target related signaling proteins, may be localized in one or more clusters, which are in a close relationship. MicroRNAs are involved in basic physiological processes, and their deregulation is associated with the origin of various pathologies, including solid tumors or hematologic malignancies. Recently, the interplay between the expression of microRNA clusters and families and epigenetic machinery was described, indicating aberrant DNA methylation or histone modifications as major mechanisms responsible for microRNA deregulation during cancerogenesis. In this review, the most studied microRNA clusters and families affected by hyper- or hypomethylation as well as by histone modifications are presented with the focus on particular mechanisms. Finally, the diagnostic and prognostic potential of microRNA clusters and families is discussed together with technologies currently used for epigenetic-based cancer therapies.


2020 ◽  
Vol 14 ◽  
pp. 117955492097636
Author(s):  
Ah-Reum Jeong ◽  
Edward D Ball ◽  
Aaron Michael Goodman

Treatment of cancer has transformed with the introduction of checkpoint inhibitors. However, the majority of solid tumor patients do not respond to checkpoint blockade. In contrast, the response rate to programmed cell death 1 (PD-1) blockade in relapsed/refractory classical Hodgkin lymphoma (cHL) is 65% to 84% which is the highest among all cancers. Currently, checkpoint inhibitors are only approved for cHL and primary mediastinal B-cell lymphoma as the responses to single-agent checkpoint blockade in other hematologic malignancies is disappointingly low. Various established biomarkers such as programmed cell death 1 ligand 1 (PD-L1) protein surface expression, mismatch repair (MMR) status, and tumor mutational burden (TMB) are routinely used in clinical decision-making in solid tumors. In this review, we will explore these biomarkers in the context of hematologic malignancies. We review characteristic 9p24.1 structural alteration in cHL and primary mediastinal B-cell lymphoma (PMBCL) as a basis for response to PD-1 inhibition, as well as the role of antigen presentation pathways. We also explore the reported frequencies of MMR deficiency in various hematologic malignancies and investigate TMB as a predictive marker.


Sign in / Sign up

Export Citation Format

Share Document