scholarly journals Integrative Analyses of Widely Targeted Metabolic Profiling and Transcriptome Data Reveals Molecular Insight into Metabolomic Variations during Apple (Malus domestica) Fruit Development and Ripening

2020 ◽  
Vol 21 (13) ◽  
pp. 4797 ◽  
Author(s):  
Jidi Xu ◽  
Jinjiao Yan ◽  
Wenjie Li ◽  
Qianying Wang ◽  
Caixia Wang ◽  
...  

The apple is a favorite fruit for human diet and is one of the most important commercial fruit crops around the world. Investigating metabolic variations during fruit development can provide a better understanding on the formation of fruit quality. The present study applied a widely targeted LC-MS-based metabolomics approach with large-scale detection, identification and quantification to investigate the widespread metabolic changes during “Pinova” apple development and ripening. A total of 462 primary and secondary metabolites were simultaneously detected, and their changes along with the four fruit-development stages were further investigated. The results indicated that most of the sugars presented increasing accumulation levels while organic acid, including Tricarboxylic acid cycle (TCA) intermediates, showed a distinct decreasing trend across the four fruit-development stages. A total of 207 secondary metabolites consisted of 104 flavonoids and 103 other secondary metabolites. Many flavonoids maintained relatively high levels in the early fruit stage and then rapidly decreased their levels at the following developmental stages. Further correlation analyses of each metabolite–metabolite pair highlighted the cross talk between the primary and secondary metabolisms across fruit development and ripening, indicating the significant negative correlations between sugars and secondary metabolites. Moreover, transcriptome analysis provided the molecular basis for metabolic variations during fruit development. The results showed that most differentially expressed genes (DEGs) involved in the TCA cycle were upregulated from the early fruit stage to the preripening stage. The extensive downregulation of controlling genes involved in the flavonoid pathway is probably responsible for the rapid decrease of flavonoid content at the early fruit stage. These data provide a global view of the apple metabolome and a comprehensive analysis on metabolomic variations during fruit development, providing a broader and better understanding on the molecular and metabolic basis of important fruit quality traits in commercial apples.

Metabolites ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 335 ◽  
Author(s):  
Sukhmanpreet Kaur ◽  
Vidya Suseela

Arbuscular mycorrhizal fungi (AMF) is among the most ubiquitous plant mutualists that enhance plant growth and yield by facilitating the uptake of phosphorus and water. The countless interactions that occur in the rhizosphere between plants and its AMF symbionts are mediated through the plant and fungal metabolites that ensure partner recognition, colonization, and establishment of the symbiotic association. The colonization and establishment of AMF reprogram the metabolic pathways of plants, resulting in changes in the primary and secondary metabolites, which is the focus of this review. During initial colonization, plant–AMF interaction is facilitated through the regulation of signaling and carotenoid pathways. After the establishment, the AMF symbiotic association influences the primary metabolism of the plant, thus facilitating the sharing of photosynthates with the AMF. The carbon supply to AMF leads to the transport of a significant amount of sugars to the roots, and also alters the tricarboxylic acid cycle. Apart from the nutrient exchange, the AMF imparts abiotic stress tolerance in host plants by increasing the abundance of several primary metabolites. Although AMF initially suppresses the defense response of the host, it later primes the host for better defense against biotic and abiotic stresses by reprogramming the biosynthesis of secondary metabolites. Additionally, the influence of AMF on signaling pathways translates to enhanced phytochemical content through the upregulation of the phenylpropanoid pathway, which improves the quality of the plant products. These phytometabolome changes induced by plant–AMF interaction depends on the identity of both plant and AMF species, which could contribute to the differential outcome of this symbiotic association. A better understanding of the phytochemical landscape shaped by plant–AMF interactions would enable us to harness this symbiotic association to enhance plant performance, particularly under non-optimal growing conditions.


2017 ◽  
Vol 45 (2) ◽  
pp. 417-424 ◽  
Author(s):  
Zala ZORENC ◽  
Robert VEBERIC ◽  
Darinka KORON ◽  
Maja MIKULIC-PETKOVSEK

High temperature stress, which has been occurring more often in recent years, usually coincides with the flowering of primocane raspberries and causes a negative effect on fruit quality parameters. One of the methods of delaying raspberry flowering and fruit development to avoid high summer temperatures is tipping the young primocanes. The aim of the study was to investigate how this practice affects the fruit characteristics and primary and secondary metabolites of two primocane raspberry cultivars (‘Amira’ and ‘Polka’). For this purpose, we performed primocane tipping on two different dates in late spring and analyzed the berries from three subsequent sampling dates. High performance liquid chromatography-mass spectrometry (HPLC-MS) analyses were used for the identification and quantification of individual phenolic compounds and HPLC analyses for individual sugars and organic acids. Primocane tipping had great influence on the beginning of the harvest season of both cultivars. The impact on fruit yield was insignificant. Sampling date had a greater influence on fruit metabolite contents than did different treatments, with cultivar ‘Polka’ showing a greater response to primocane tipping than cultivar 'Amira'. Based on primary and secondary metabolites, it is difficult to say which treatment provided the best results, since dissimilar patterns were shown at different sampling dates and between cultivars. With negligible differences in fruit quality, primocane tipping was shown to be a good cultivation practice for delaying the production season of raspberries.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xin Li ◽  
Yingfang Chai ◽  
Hongbin Yang ◽  
Zhen Tian ◽  
Chengyang Li ◽  
...  

AbstractMitochondria are crucial for the production of primary and secondary metabolites, which largely determine the quality of fruit. However, a method for isolating high-quality mitochondria is currently not available in citrus fruit, preventing high-throughput characterization of mitochondrial functions. Here, based on differential and discontinuous Percoll density gradient centrifugation, we devised a universal protocol for isolating mitochondria from the pulp of four major citrus species, including satsuma mandarin, ponkan mandarin, sweet orange, and pummelo. Western blot analysis and microscopy confirmed the high purity and intactness of the isolated mitochondria. By using this protocol coupled with a label-free proteomic approach, a total of 3353 nonredundant proteins were identified. Comparison of the four mitochondrial proteomes revealed that the proteins commonly detected in all proteomes participate in several typical metabolic pathways (such as tricarboxylic acid cycle, pyruvate metabolism, and oxidative phosphorylation) and pathways closely related to fruit quality (such as γ-aminobutyric acid (GABA) shunt, ascorbate metabolism, and biosynthesis of secondary metabolites). In addition, differentially abundant proteins (DAPs) between different types of species were also identified; these were found to be mainly involved in fatty acid and amino acid metabolism and were further confirmed to be localized to the mitochondria by subcellular localization analysis. In summary, the proposed protocol for the isolation of highly pure mitochondria from different citrus fruits may be used to obtain high-coverage mitochondrial proteomes, which can help to establish the association between mitochondrial metabolism and fruit storability or quality characteristics of different species and lay the foundation for discovering novel functions of mitochondria in plants.


2021 ◽  
Author(s):  
Stella O. Bruce ◽  
Felix A. Onyegbule

Natural products are in the form of primary and secondary metabolites and are isolated chemical compounds or substances from living organisms. Terpenes, Phenolic compounds, and Nitrogen-containing compounds are secondary metabolites. The biosyntheses of secondary metabolites are derived from primary metabolism pathways, which consist of a tricarboxylic acid cycle (TCA), methylerythritol phosphate pathway (MEP), mevalonic and shikimic acid pathway. This chapter provides an overview of the diversity of secondary metabolites in plants, their multiple biological functions, and multi-faceted cultural history.


2016 ◽  
pp. 323-328
Author(s):  
J. Ćota ◽  
O. Kurtović ◽  
E. Sarić ◽  
A. Hadžić ◽  
J. Zdravković ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260004
Author(s):  
Haiying Yang ◽  
Changping Tian ◽  
Shujun Ji ◽  
Fengzhu Ni ◽  
Xinguang Fan ◽  
...  

Sweet cherry (Prunus avium L.), one of the most appreciated and most important commercial temperate fruits, has high sensory quality and nutritional value. Investigating its metabolic variations provides valuable information on the formation of fruit quality. In this study, widely targeted LC-MS/MS based metabolomics was used to identify and quantify metabolic changes during ‘Black Pearl’ sweet cherry development and ripening. A total of 263 significant differentially expressed metabolites (DEMs) were detected during the four fruit-development stages. Significant differences were observed in the composition and content of compounds in the four stages of cherry development, especially sugars, organic acids, and flavonoids. Moreover, transcriptome analysis provided a molecular basis for metabolic variations during fruit development. A total of 6724 significant differentially expressed genes (DEGs) were identified. Further correlation analysis of major DEMs and DEGs showed that 19 key DEGs were involved in sugar metabolism, 23 key DEGs in organic acid metabolism, and 13 key DEGs in flavonoid metabolism. The upregulated genes involved in the flavonoid pathway probably play an important role in regulating the rapid increase of anthocyanin content during fruit development. These comprehensive analysis data provide a better understanding to improve fruit quality traits based on molecular and metabolic levels.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaonan Dong ◽  
Chaorui Liu ◽  
Yuqi Wang ◽  
Qing Dong ◽  
Yingping Gai ◽  
...  

To understand the mechanism of small non-coding RNAs (miRNA)-mediated development and ripening of mulberry fruits, three small RNA libraries from mulberry fruits at different development stages were constructed, and 159 conserved miRNAs as well as 86 novel miRNAs were successfully identified. Among the miRNAs identified, there were 90 miRNAs which showed differential expression patterns at different stages of fruit development and ripening. The target genes of these differential expressed (DE) miRNAs were involved in growth and development, transcription and regulation of transcription, metabolic processes, and etc. Interestingly, it was found that the expression level of mul-miR477 was increased with fruit ripening, and it can target the antisense lncRNA (Mul-ABCB19AS) of the ATP binding cassette (ABC) transporter B 19 gene (Mul-ABCB19). Our results showed that mul-miR477 can repress the expression of Mul-ABCB19AS and increase the expression of Mul-ABCB19, and it acted as a positive regulator participating anthocyanin accumulation through the regulatory network of mul-miR477—Mul-ABCB19AS—Mul-ABCB19.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuanyuan Xu ◽  
Yuan Gao ◽  
Zhong Chen ◽  
Guochun Zhao ◽  
Jiming Liu ◽  
...  

AbstractSoapberry (Sapindus mukorossi Gaertn.) is a multi-functional tree with widespread application in toiletries, biomedicine, biomass energy, and landscaping. The pericarp of soapberry can be used as a medicine or detergent. However, there is currently no systematic study on the chemical constituents of soapberry pericarp during fruit development and ripening, and the dynamic changes in these constituents still unclear. In this study, a non-targeted metabolomics approach using ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) was used to comprehensively profile the variations in metabolites in the soapberry pericarp at eight fruit growth stages. The metabolome coverage of UHPLC-HRMS on a HILIC column was higher than that of a C18 column. A total of 111 metabolites were putatively annotated. Principal component analysis and hierarchical clustering analysis of pericarp metabolic composition revealed clear metabolic shifts from early (S1–S2) to late (S3–S5) development stages to fruit ripening stages (S6–S8). Furthermore, pairwise comparison identified 57 differential metabolites that were involved in 18 KEGG pathways. Early fruit development stages (S1–S2) were characterized by high levels of key fatty acids, nucleotides, organic acids, and phosphorylated intermediates, whereas fruit ripening stages (S6–S8) were characterized by high contents of bioactive and valuable metabolites, such as troxipide, vorinostat, furamizole, alpha-tocopherol quinone, luteolin, and sucrose. S8 (fully developed and mature stage) was the most suitable stage for fruit harvesting to utilize the pericarp. To the best of our knowledge, this was the first metabolomics study of the soapberry pericarp during whole fruit growth. The results could offer valuable information for harvesting, processing, and application of soapberry pericarp, as well as highlight the metabolites that could mediate the biological activity or properties of this medicinal plant.


Sign in / Sign up

Export Citation Format

Share Document