scholarly journals The Bacterial Anti-Adhesive Activity of Double-Etched Titanium (DAE) as a Dental Implant Surface

2020 ◽  
Vol 21 (21) ◽  
pp. 8315
Author(s):  
Morena Petrini ◽  
Alessandra Giuliani ◽  
Emanuela Di Campli ◽  
Silvia Di Lodovico ◽  
Giovanna Iezzi ◽  
...  

This work aimed to compare the capability of Streptococcus oralis to adhere to a novel surface, double-etched titanium (DAE), in respect to machined and single-etched titanium. The secondary outcome was to establish which topographical features could affect the interaction between the implant surface and bacteria. The samples’ superficial features were characterized using scanning electron microscopy (SEM) and energy dispersive x-ray spectrometry (EDS), and the wetting properties were tested through sessile methods. The novel surface, the double-etched titanium (DAE), was also analyzed with atomic force microscopy (AFM). S. oralis was inoculated on discs previously incubated in saliva, and then the colony-forming units (CFUs), biomass, and cellular viability were measured at 24 and 48h. SEM observation showed that DAE was characterized by higher porosity and Oxygen (%) in the superficial layer and the measurement of the wetting properties showed higher hydrophilicity. AFM confirmed the presence of a higher superficial nano-roughness. Microbiological analysis showed that DAE discs, coated by pellicle’s proteins, were characterized by significantly lower CFUs at 24 and 48 h with respect to the other two groups. In particular, a significant inverse relationship was shown between the CFUs at 48 h and the values of the wetted area and a direct correlation with the water contact angle. The biomass at 24 h was slightly lower on DAE, but results were not significant concerning the other groups, both at 24 and 48 h. The DAE treatment not only modifies the superficial topography and increased hydrophilicity, but it also increases the Oxygen percentage in the superficial layer, which could contribute to the inhibition of S. oralis adhesion. DAE can be considered a promising treatment for titanium implants to counteract a colonization pioneer microorganism, such as S. oralis.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Masatsugu Hirota ◽  
Tohru Hayakawa

The adsorption of proteins on the dental implant surface is the first step in the key role of osseointegration. Many types of proteins exist in the living body and compete for adsorption on the material surface. As an implant material, partially stabilized zirconia (ZrO2) is currently an attractive alternative to titanium to overcome the shortcomings of titanium implants. In this study, we investigated the two-step adsorption of fibronectin (Fn) and bovine serum albumin (Alb) on the ZrO2 surface using a 27-MHz quartz crystal microbalance (QCM) method. A ZrO2 sensor was employed for the QCM measurements. Two-step adsorptions were performed as follows. (1) Fn-Alb series: first, the Fn solution was injected into the phosphate-buffered saline (PBS) solution, followed by the Alb solution. (2) Alb-Fn series: first, the Alb solution was injected, followed by the Fn solution. The decrease in frequency was monitored for 60 minutes after each protein injection. The adsorbed amounts of Fn or Alb were calculated by observing the decrease in frequency, and the apparent reaction rate, kobs, was obtained through the curve fitting of frequency shift against the adsorption time. No significant difference was observed in the adsorbed amounts of Fn and Alb between the Fn-Alb and Alb-Fn series ( P > 0.05 ). The kobs, rate of protein adsorption, in the second step was significantly slower than that in the first step for both Fn and Alb adsorption ( P < 0.05 ). There was no clear correlation between the amount of protein adsorbed on the ZrO2 sensor and the surface topography. It was concluded that the amount of protein adsorbed on the ZrO2 surface was not influenced by the two-step adsorption series, but the adsorption rate of proteins in the second step was affected by the first-step protein adsorption.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1118
Author(s):  
Paula Zwicker ◽  
Norman Geist ◽  
Elisabeth Göbler ◽  
Martin Kulke ◽  
Thomas Schmidt ◽  
...  

Unlike the native surface of the implant material (Ti6Al4V), oxidation with H2O2 leads to increased binding of the effective antimicrobial agent poly(hexamethylene) biguanide [PHMB]. However, treating with NaOH instead results in an even higher PHMB mass coverage. After oxidation with H2O2, strong differences in the PHMB adsorption capability between polished and corundum-blasted surfaces appear, indicating a roughness dependence. After NaOH treatment, no such effect was observed. The wetting properties of specimens treated with either H2O2 or NaOH prior to PHMB exposure clearly varied. To unravel the nature of this interaction, widespread in silico and in vitro experiments were performed. Methods: By X-ray photoelectron spectroscopy, scanning electron microscopy, water contact angle measurements and MD simulations, we characterized the interplay between the polycationic antimicrobial agent and the implant surface. A theoretical model for PHMB micelles is tested for its wetting properties and compared to carbon contaminated TiO2. In addition, quantitation of anionic functional group equivalents, the binding properties of PHMB with blocked amino end-group, and the ability to bind chlorhexidine digluconate (CHG) were investigated. Ultimately, the capability of osteoblasts to build calcium apatite, and the activity of alkaline phosphatase on PHMB coated specimens, were determined. Results: Simulated water contact angles on carbon contaminated TiO2 surfaces and PHMB micelle models reveal little influence of PHMB on the wetting properties and point out the major influence of remaining and recovering contamination from ambient air. Testing PHMB adsorption beyond the critical micelle concentration and subsequent staining reveals an island-like pattern with H2O2 as compared to an evenly modified surface with NaOH. Both CHG and PHMB, with blocked amino end groups, were adsorbed on the treated surfaces, thus negating the significant influence of PHMB’s terminal groups. The ability of osteoblasts to produce calcium apatite and alkaline phosphatase is not negatively impaired for PHMB mass coverages up to 8 μg/specimen. Conclusion: Differences in PHMB adsorption are triggered by the number of anionic groups and carbon contaminants, both of which depend on the specimen pre-treatment. With more PHMB covering, the implant surface is protected against the capture of new contamination from the ambient air, thus building a robust antimicrobial and biocompatible surface coating.


2012 ◽  
Vol 529-530 ◽  
pp. 559-564 ◽  
Author(s):  
Akihiro Furuhashi ◽  
Yasunori Ayukawa ◽  
Ikiru Atsuta ◽  
Yunia Dwi Rakhmatia ◽  
Noriyuki Yasunami ◽  
...  

At the neck area of dental implant surface, machined surface (Ms) has been employed to avoid surface contamination. Recently, implants which have roughened surface texture (Rs) at their neck are also available. However, from the viewpoint of soft tissue integration, it remains to be elucidated whether or not surface topography affects the soft tissue attachment around implants. The aim of the present study was to clarify the influence of surface topography on peri-implant soft tissue integration. First, surface roughness of both surfaces was measured. Second, protein adsorption capability on both surfaces was examined. Then, as the rat implant model, titanium implants with each surface were inserted into the maxillae. Horseradish peroxidase (HRP) tracer was applied 4 weeks post implantation to the gingival sulci of implants or natural teeth (NT) to investigate the sealing capability of periodontal/peri-implant soft tissue. Collagen density was also observed by fluorescent staining. As a result, surface roughness (Sa) of Ms and Rs was 0.16 µm and 0.25 µm, respectively. Protein adsorption capability on both surface showed no significant differences. In the NT group of the rat implant model, presence of HRP was restricted only in the coronal portion of epithelium. In both implant groups, in contrast, more invasion of HRP was observed in the soft tissue around implants. Especially in the Ms group, more HRP was observed in the deeper area compared with Rs group. Stronger expression of collagen was observed around Rs compared to Ms at the connective tissue-implant interface. It could be speculated that, with dense collagen, Rs implants showed stronger soft tissue integration compared with Ms implants, but the integration is not as strong as NT’s.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Andrea Enrico Borgonovo ◽  
Rachele Censi ◽  
Virna Vavassori ◽  
Mauro Savio ◽  
Dino Re

Titanium dental implant surface does not remain unaltered but may corrode and release ions or particles which trigger soft and hard tissue damage. Titanium may induce clinically relevant hypersensitivity in patients chronically exposed. A 56-year-old female patient presented peri-implantitis around a single titanium implant positioned three years earlier. Despite nonsurgical therapy, a rapid bone loss associated with pain and swelling occurred, and adjacent teeth presented external resorption. Compromised teeth were removed, and three titanium implants were inserted. Six months later, the patient complained about high mucosa sensitivity and implant exposure. At clinical and radiographic examinations, tissue inflammation and vertical bone loss involved the new implants and the process of external resorption affected the teeth. The blood test confirmed titanium hypersensitivity. Titanium implants were removed, and 5 zirconia implants were placed. No sign of bone loss or tooth resorption was recorded at clinical and radiographic control during 18 months of follow-up.


2021 ◽  
Vol 10 (8) ◽  
pp. 1641
Author(s):  
Stefanie Kligman ◽  
Zhi Ren ◽  
Chun-Hsi Chung ◽  
Michael Angelo Perillo ◽  
Yu-Cheng Chang ◽  
...  

Implant surface design has evolved to meet oral rehabilitation challenges in both healthy and compromised bone. For example, to conquer the most common dental implant-related complications, peri-implantitis, and subsequent implant loss, implant surfaces have been modified to introduce desired properties to a dental implant and thus increase the implant success rate and expand their indications. Until now, a diversity of implant surface modifications, including different physical, chemical, and biological techniques, have been applied to a broad range of materials, such as titanium, zirconia, and polyether ether ketone, to achieve these goals. Ideal modifications enhance the interaction between the implant’s surface and its surrounding bone which will facilitate osseointegration while minimizing the bacterial colonization to reduce the risk of biofilm formation. This review article aims to comprehensively discuss currently available implant surface modifications commonly used in implantology in terms of their impact on osseointegration and biofilm formation, which is critical for clinicians to choose the most suitable materials to improve the success and survival of implantation.


2021 ◽  
Vol 11 (12) ◽  
pp. 5324
Author(s):  
Maria Menini ◽  
Francesca Delucchi ◽  
Domenico Baldi ◽  
Francesco Pera ◽  
Francesco Bagnasco ◽  
...  

(1) Background: Intrinsic characteristics of the implant surface and the possible presence of endotoxins may affect the bone–implant interface and cause an inflammatory response. This study aims to evaluate the possible inflammatory response induced in vitro in macrophages in contact with five different commercially available dental implants. (2) Methods: one zirconia implant NobelPearl® (Nobel Biocare) and four titanium implants, Syra® (Sweden & Martina), Prama® (Sweden & Martina), 3iT3® (Biomet 3i) and Shard® (Mech & Human), were evaluated. After 4 h of contact of murine macrophage cells J774a.1 with the implants, the total RNA was extracted, transcribed to cDNA and the gene expression of the macrophages was evaluated by quantitative PCR (qPCR) in relation to the following genes: GAPDH, YWHAZ, IL1β, IL6, TNFα, NOS2, MMP-9, MMP-8 and TIMP3. The results were statistically analyzed and compared with negative controls. (3) Results: No implant triggered a significant inflammatory response in macrophages, although 3iT3 exhibited a slight pro-inflammatory effect compared to other samples. (4) Conclusions: All the samples showed optimal outcomes without any inflammatory stimulus on the examined macrophagic cells.


2020 ◽  
Vol 61 (6) ◽  
pp. 177-187
Author(s):  
Till Kämmerer ◽  
Tony Lesmeister ◽  
Victor Palarie ◽  
Eik Schiegnitz ◽  
Andrea Schröter ◽  
...  

Introduction: We aimed to compare implant osseointegration with calcium phosphate (CaP) surfaces and rough subtractive-treated sandblasted/acid etched surfaces (SA) in an in vivo minipig mandible model. Materials and Methods: A total of 36 cylindrical press-fit implants with two different surfaces (CaP, n = 18; SA, n = 18) were inserted bilaterally into the mandible of 9 adult female minipigs. After 2, 4, and 8 weeks, we analyzed the cortical bone-to-implant contact (cBIC; %) and area coverage of bone-to-implant contact within representative bone chambers (aBIC; %). Results: After 2 weeks, CaP implants showed no significant increase in cBIC and aBIC compared to SA (cBIC: mean 38 ± 5 vs. 16 ± 11%; aBIC: mean 21 ± 1 vs. 6 ± 9%). Two CaP implants failed to achieve osseointegration. After 4 weeks, no statistical difference between CaP and SA was seen for cBIC (mean 54 ± 15 vs. 43 ± 16%) and aBIC (mean 43 ± 28 vs. 32 ± 6). However, we excluded two implants in each group due to failure of osseointegration. After 8 weeks, we observed no significant intergroup differences (cBIC: 18 ± 9 vs. 18 ± 20%; aBIC: 13 ± 8 vs. 16 ± 9%). Again, three CaP implants and two SA implants had to be excluded due to failure of osseointegration. Conclusion: Due to multiple implant losses, we cannot recommend the oral mandibular minipig in vivo model for future endosseous implant research. Considering the higher rate of osseointegration failure, CaP coatings may provide an alternative to common subtractive implant surface modifications in the early phase post-insertion.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Karl Niklas Hansson ◽  
Stig Hansson

The surface roughness affects the bone response to dental implants. A primary aim of the roughness is to increase the bone-implant interface shear strength. Surface roughness is generally characterized by means of surface roughness parameters. It was demonstrated that the normally used parameters cannot discriminate between surfaces expected to give a high interface shear strength from surfaces expected to give a low interface shear strength. It was further demonstrated that the skewness parameter can do this discrimination. A problem with this parameter is that it is sensitive to isolated peaks and valleys. Another roughness parameter which on theoretical grounds can be supposed to give valuable information on the quality of a rough surface is kurtosis. This parameter is also sensitive to isolated peaks and valleys. An implant surface was assumed to have a fairly well-defined and homogenous “semiperiodic” surface roughness upon which isolated peaks were superimposed. In a computerized simulation, it was demonstrated that by using small sampling lengths during measurement, it should be possible to get accurate values of the skewness and kurtosis parameters.


2021 ◽  
Vol 9 (2) ◽  
pp. 428
Author(s):  
María Carmen Sánchez ◽  
Andrea Alonso-Español ◽  
Honorato Ribeiro-Vidal ◽  
Bettina Alonso ◽  
David Herrera ◽  
...  

Microbial biofilm modeling has improved in sophistication and scope, although only a limited number of standardized protocols are available. This review presents an example of a biofilm model, along with its evolution and application in studying periodontal and peri-implant diseases. In 2011, the ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) research group at the University Complutense of Madrid developed an in vitro biofilm static model using representative bacteria from the subgingival microbiota, demonstrating a pattern of bacterial colonization and maturation similar to in vivo subgingival biofilms. When the model and its methodology were standardized, the ETEP research group employed the validated in vitro biofilm model for testing in different applications. The evolution of this model is described in this manuscript, from the mere observation of biofilm growth and maturation on static models on hydroxyapatite or titanium discs, to the evaluation of the impact of dental implant surface composition and micro-structure using the dynamic biofilm model. This evolution was based on reproducing the ideal microenvironmental conditions for bacterial growth within a bioreactor and reaching the target surfaces using the fluid dynamics mimicking the salivary flow. The development of this relevant biofilm model has become a powerful tool to study the essential processes that regulate the formation and maturation of these important microbial communities, as well as their behavior when exposed to different antimicrobial compounds.


2018 ◽  
Vol 43 (6) ◽  
pp. E288-E299 ◽  
Author(s):  
AP Ayres ◽  
PH Freitas ◽  
J De Munck ◽  
A Vananroye ◽  
C Clasen ◽  
...  

SUMMARY Objectives: This study aimed to evaluate the influence of two nonthermal atmospheric plasma (NTAP) application times and two storage times on the microtensile bond strength (μTBS) to dentin. The influence of NTAP on the mechanical properties of the dentin-resin interface was studied by analyzing nanohardness (NH) and Young's modulus (YM). Water contact angles of pretreated dentin and hydroxyapatite blocks were also measured to assess possible alterations in the surface hydrophilicity upon NTAP. Methods and Materials: Forty-eight human molars were used in a split-tooth design (n=8). Midcoronal exposed dentin was flattened by a 600-grit SiC paper. One-half of each dentin surface received phosphoric acid conditioning, while the other half was covered with a metallic barrier and remained unetched. Afterward, NTAP was applied on the entire dentin surface (etched or not) for 10 or 30 seconds. The control groups did not receive NTAP treatment. Scotchbond Universal (SBU; 3M ESPE) and a resin-based composite were applied to dentin following the manufacturer's instructions. After 24 hours of water storage at 37°C, the specimens were sectioned perpendicular to the interface to obtain approximately six specimens or bonded beams (approximately 0.9 mm2 in cross-sectional area) representing the etch-and-rinse (ER) approach and another six specimens representing the self-etch (SE) approach. Half of the μTBS specimens were immediately loaded until failure, while the other half were first stored in deionized water for two years. Three other bonded teeth were selected from each group (n=3) for NH and YM evaluation. Water contact-angle analysis was conducted using a CAM200 (KSV Nima) goniometer. Droplet images of dentin and hydroxyapatite surfaces with or without 10 or 30 seconds of plasma treatment were captured at different water-deposition times (5 to 55 seconds). Results: Two-way analysis of variance revealed significant differences in μTBS of SBU to dentin after two years of water storage in the SE approach, without differences among treatments. After two years of water aging, the ER control and ER NTAP 10-second groups showed lower μTBS means compared with the ER NTAP 30-second treated group. Nonthermal atmospheric plasma resulted in higher NH and YM for the hybrid layer. The influence of plasma treatment in hydrophilicity was more evident in the hydroxyapatite samples. Dentin hydrophilicity increased slightly after 10 seconds of NTAP, but the difference was higher when the plasma was used for 30 seconds. Conclusions: Dentin NTAP treatment for 30 seconds contributed to higher μTBS after two years of water storage in the ER approach, while no difference was observed among treatments in the SE evaluation. This result might be correlated to the increase in nanohardness and Young's modulus of the hybrid layer and to better adhesive infiltration, since dentin hydrophilicity was also improved. Although some effects were observed using NTAP for 10 seconds, the results suggest that 30 seconds is the most indicated treatment time.


Sign in / Sign up

Export Citation Format

Share Document