scholarly journals Different Expressions of HIF-1α and Metabolism in Brain and Major Visceral Organs of Acute Hypoxic Mice

2021 ◽  
Vol 22 (13) ◽  
pp. 6705
Author(s):  
Lu Xu ◽  
Hua Song ◽  
Qi Qiu ◽  
Ting Jiang ◽  
Pingyun Ge ◽  
...  

Hypoxia is associated with clinical diseases. Extreme hypoxia leads to multiple organs failure. However, the different effects of hypoxia on brain and visceral organs still need to be clarified, and moreover, characteristics in vulnerable organs suffering from hypoxia remain elusive. In the present study, we first aimed to figure out the hypoxic sensitivity of organs. Adult male mice were exposed to 6% O2 or 8% O2 for 6 h. Control mice were raised under normoxic conditions. In vivo and in vitro imaging of anti-HIF-1α-NMs-cy5.5 nanocomposites showed that the expression level of hypoxia-inducible factor (HIF-1α) was the highest in the liver, followed by kidney and brain. HIF-1α was detected in the hepatocytes of liver, distal convoluted tubules of kidney and neurons of cerebral cortex. The liver, kidney and brain showed distinct metabolic profiles but an identical change in glutamate. Compared with kidney and brain, the liver had more characteristic metabolites and more disturbed metabolic pathways related to glutaminolysis and glycolysis. The level of O-phosphocholine, GTP, NAD and aspartate were upregulated in hypoxic mice brain, which displayed significant positive correlations with the locomotor activity in control mice, but not in hypoxic mice with impaired locomotor activities. Taken together, the liver, kidney and brain are the three main organs of the body that are strongly respond to acute hypoxia, and the liver exhibited the highest hypoxic sensitivity. The metabolic disorders appear to underlie the physiological function changes.

2010 ◽  
Vol 298 (3) ◽  
pp. R661-R671 ◽  
Author(s):  
Tomoharu Tanaka ◽  
Takuhiko Wakamatsu ◽  
Hiroki Daijo ◽  
Seiko Oda ◽  
Shinichi Kai ◽  
...  

The transcription factor hypoxia-inducible factor-1 (HIF-1) plays an essential role in regulating gene expression in response to hypoxia-ischemia. Ischemia causes the tissue not only to be hypoxic but also to be hypothermic because of the hypoperfusion under certain circumstances. On the other hand, the induced hypothermia is one of the most common therapeutic modalities to extend tolerance to hypoxia. Although hypoxia elicits a variety of cellular and systemic responses at different organizational levels in the body, little is known about how hypoxia-induced responses are affected by low temperature. We examined the influence of mild hypothermic conditions (28–32°C) on HIF-1 in both in vitro and in vivo settings. In vitro experiments adopting cultured cells elucidated that hypoxia-induced HIF-1 activation was resistant to 4-h exposure to the low temperature. In contrast, exposure to the low temperature as long as 24 h suppressed HIF-1 activation and the subsequent upregulation of HIF-1 target genes such as VEGF or GLUT-1. HIF-1α protein stability in the cell was not affected by hypothermic treatment. Furthermore, intracellular ATP content was reduced under 1% O2 conditions but was not largely affected by hypothermic treatment. The evidence indicates that reduction of oxygen consumption is not largely involved in suppression of HIF-1. In addition, we demonstrated that HIF-1 DNA-binding activity and HIF-1-dependent gene expressions induced under 10% O2 atmosphere in mouse brain were not influenced by treatment under 3-h hypothermic temperature but were inhibited under 5-h treatment. On the other hand, we indicated that warming ischemic legs of mice for 24 h preserved HIF-1 activity. In this report we describe for the first time that persisting low temperature significantly reduced HIF-1α neosynthesis under hypoxic conditions, leading to a decrease in gene expression for adaptation to hypoxia in both in vitro and in vivo settings.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Foo Sok Yen ◽  
Chan Shu Qin ◽  
Sharryl Tan Shi Xuan ◽  
Puah Jia Ying ◽  
Hong Yi Le ◽  
...  

Diabetes mellitus is a metabolic disorder with chronic high blood glucose levels, and it is associated with defects in insulin secretion, insulin resistance, or both. It is also a major public issue, affecting the world's population. This disease contributes to long-term health complications such as dysfunction and failure of multiple organs, including nerves, heart, blood vessels, kidneys, and eyes. Flavonoids are phenolic compounds found in nature and usually present as secondary metabolites in plants, vegetables, and fungi. Flavonoids possess many health benefits such as anti-inflammatory and antioxidant activities, and naturally occurring flavonoids contribute to antidiabetic effects.Many studies conducted in vivo and in vitro have proven the hypoglycemic effect of plant flavonoids. A large number of studies showed that flavonoids hold positive results in controlling the blood glucose level in streptozotocin (STZ)-induced diabetic rats and further prevent the complications of diabetes. The future development of flavonoid-based drugs is believed to provide significant effects on diabetes mellitus and diabetes complication diseases. This review aims at summarizing the various types of flavonoids that function as hyperglycemia regulators such as inhibitors of α-glucosidase and glucose cotransporters in the body. This review article discusses the hypoglycemic effects of selected plant flavonoids namely quercetin, kaempferol, rutin, naringenin, fisetin, and morin. Four search engines, PubMed, Google Scholar, Scopus, and SciFinder, are used to collect the data.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


Author(s):  
А.А. Раецкая ◽  
С.В. Калиш ◽  
С.В. Лямина ◽  
Е.В. Малышева ◽  
О.П. Буданова ◽  
...  

Цель исследования. Доказательство гипотезы, что репрограммированные in vitro на М3 фенотип макрофаги при введении в организм будут существенно ограничивать развитие солидной карциномы in vivo . Методика. Рост солидной опухоли инициировали у мышей in vivo путем подкожной инъекции клеток карциномы Эрлиха (КЭ). Инъекцию макрофагов с нативным М0 фенотипом и с репрограммированным M3 фенотипом проводили в область формирования солидной КЭ. Репрограммирование проводили с помощью низких доз сыворотки, блокаторов факторов транскрипции STAT3/6 и SMAD3 и липополисахарида. Использовали две схемы введения макрофагов: раннее и позднее. При раннем введении макрофаги вводили на 1-е, 5-е, 10-е и 15-е сут. после инъекции клеток КЭ путем обкалывания макрофагами с четырех сторон область развития опухоли. При позднем введении, макрофаги вводили на 10-е, 15-е, 20-е и 25-е сут. Через 15 и 30 сут. после введения клеток КЭ солидную опухоль иссекали и измеряли ее объем. Эффект введения макрофагов оценивали качественно по визуальной и пальпаторной характеристикам солидной опухоли и количественно по изменению ее объема по сравнению с группой без введения макрофагов (контроль). Результаты. Установлено, что M3 макрофаги при раннем введении от начала развития опухоли оказывают выраженный антиопухолевый эффект in vivo , который был существенно более выражен, чем при позднем введении макрофагов. Заключение. Установлено, что введение репрограммированных макрофагов M3 ограничивает развитие солидной карциномы в экспериментах in vivo . Противоопухолевый эффект более выражен при раннем введении М3 макрофагов. Обнаруженные в работе факты делают перспективным разработку клинической версии биотехнологии ограничения роста опухоли, путем предварительного программирования антиопухолевого врожденного иммунного ответа «в пробирке». Aim. To verify a hypothesis that macrophages reprogrammed in vitro to the M3 phenotype and injected into the body substantially restrict the development of solid carcinoma in vivo . Methods. Growth of a solid tumor was initiated in mice in vivo with a subcutaneous injection of Ehrlich carcinoma (EC) cells. Macrophages with a native M0 phenotype or reprogrammed towards the M3 phenotype were injected into the region of developing solid EC. Reprogramming was performed using low doses of serum, STAT3/6 and SMAD3 transcription factor blockers, and lipopolysaccharide. Two schemes of macrophage administration were used: early and late. With the early administration, macrophages were injected on days 1, 5, 10, and 15 following the injection of EC cells at four sides of the tumor development area. With the late administration, macrophages were injected on days 10, 15, 20, and 25. At 15 and 30 days after the EC cell injection, the solid tumor was excised and its volume was measured. The effect of macrophage administration was assessed both qualitatively by visual and palpation characteristics of solid tumor and quantitatively by changes in the tumor volume compared with the group without the macrophage treatment. Results. M3 macrophages administered early after the onset of tumor development exerted a pronounced antitumor effect in vivo , which was significantly greater than the antitumor effect of the late administration of M3 macrophages. Conclusion. The observed significant inhibition of in vivo growth of solid carcinoma by M3 macrophages makes promising the development of a clinical version of the biotechnology for restriction of tumor growth by in vitro pre-programming of the antitumor, innate immune response.


2020 ◽  
Vol 26 (45) ◽  
pp. 5783-5792
Author(s):  
Kholood Abid Janjua ◽  
Adeeb Shehzad ◽  
Raheem Shahzad ◽  
Salman Ul Islam ◽  
Mazhar Ul Islam

There is compelling evidence that drug molecules isolated from natural sources are hindered by low systemic bioavailability, poor absorption, and rapid elimination from the human body. Novel approaches are urgently needed that could enhance the retention time as well as the efficacy of natural products in the body. Among the various adopted approaches to meet this ever-increasing demand, nanoformulations show the most fascinating way of improving the bioavailability of dietary phytochemicals through modifying their pharmacokinetics and pharmacodynamics. Curcumin, a yellowish pigment isolated from dried ground rhizomes of turmeric, exhibits tremendous pharmacological effects, including anticancer activities. Several in vitro and in vivo studies have shown that curcumin mediates anticancer effects through the modulation (upregulation and/or downregulations) of several intracellular signaling pathways both at protein and mRNA levels. Scientists have introduced multiple modern techniques and novel dosage forms for enhancing the delivery, bioavailability, and efficacy of curcumin in the treatment of various malignancies. These novel dosage forms include nanoparticles, liposomes, micelles, phospholipids, and curcumin-encapsulated polymer nanoparticles. Nanocurcumin has shown improved anticancer effects compared to conventional curcumin formulations. This review discusses the underlying molecular mechanism of various nanoformulations of curcumin for the treatment of different cancers. We hope that this study will make a road map for preclinical and clinical investigations of cancer and recommend nano curcumin as a drug of choice for cancer therapy.


Coronaviruses ◽  
2020 ◽  
Vol 01 ◽  
Author(s):  
Ashraf Talaat Youssef

The pandemic of COVID-19 had started in Wuhan city china in late 2019 with a subsequent worldwide spread. The viral infection can seriousely affect multiple organs mainly lungs, kidneys, heart, liver and brain and may lead to respiratory, renal, cardiac or hepatic failure.Vascular thrombosis of unexplained mechanism that may lead to widespread blood clots in multiple organs and cytokine storms that result of overstimulation of the immune system subsequent of lung damage may lead to sudden decompensation due to hypotension and more damage to liver, kidney, brain or lungs.Until now no drug had proved efficient in getting rid of the problem and controlling the pandemic mainly depends on preventive measures.Many preventive measures can be considered to prevent the worldwide spread of viral transmission. Polyunsaturated long chain fatty acids (PUFAs) and the medium chain saturated fatty acids (MCSFAs) and their corresponding monoglycerides had high antiviral activities against the enveloped viruses which reach to more than 10,000 -fold reduction in the viral titres in vitro and in vivo after testing of its gastric aspirate, and can contribute to the systemic immunity against the enveloped viruses.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 315
Author(s):  
Zhenxing Wang ◽  
Zongcai Tu ◽  
Xing Xie ◽  
Hao Cui ◽  
Kin Weng Kong ◽  
...  

This study aims to evaluate the bioactive components, in vitro bioactivities, and in vivo hypoglycemic effect of P. frutescens leaf, which is a traditional medicine-food homology plant. P. frutescens methanol crude extract and its fractions (petroleum ether, chloroform, ethyl acetate, n-butanol fractions, and aqueous phase residue) were prepared by ultrasound-enzyme assisted extraction and liquid–liquid extraction. Among the samples, the ethyl acetate fraction possessed the high total phenolic (440.48 μg GAE/mg DE) and flavonoid content (455.22 μg RE/mg DE), the best antioxidant activity (the DPPH radical, ABTS radical, and superoxide anion scavenging activity, and ferric reducing antioxidant power were 1.71, 1.14, 2.40, 1.29, and 2.4 times higher than that of control Vc, respectively), the most powerful α-glucosidase inhibitory ability with the IC50 value of 190.03 μg/mL which was 2.2-folds higher than control acarbose, the strongest proliferative inhibitory ability against MCF-7 and HepG2 cell with the IC50 values of 37.92 and 13.43 μg/mL, which were considerable with control cisplatin, as well as certain inhibition abilities on acetylcholinesterase and tyrosinase. HPLC analysis showed that the luteolin, rosmarinic acid, rutin, and catechin were the dominant components of the ethyl acetate fraction. Animal experiments further demonstrated that the ethyl acetate fraction could significantly decrease the serum glucose level, food, and water intake of streptozotocin-induced diabetic SD rats, increase the body weight, modulate their serum levels of TC, TG, HDL-C, and LDL-C, improve the histopathology and glycogen accumulation in liver and intestinal tissue. Taken together, P. frutescens leaf exhibits excellent hypoglycemic activity in vitro and in vivo, and could be exploited as a source of natural antidiabetic agent.


2021 ◽  
Vol 8 (3) ◽  
pp. 39
Author(s):  
Britani N. Blackstone ◽  
Summer C. Gallentine ◽  
Heather M. Powell

Collagen is a key component of the extracellular matrix (ECM) in organs and tissues throughout the body and is used for many tissue engineering applications. Electrospinning of collagen can produce scaffolds in a wide variety of shapes, fiber diameters and porosities to match that of the native ECM. This systematic review aims to pool data from available manuscripts on electrospun collagen and tissue engineering to provide insight into the connection between source material, solvent, crosslinking method and functional outcomes. D-banding was most often observed in electrospun collagen formed using collagen type I isolated from calfskin, often isolated within the laboratory, with short solution solubilization times. All physical and chemical methods of crosslinking utilized imparted resistance to degradation and increased strength. Cytotoxicity was observed at high concentrations of crosslinking agents and when abbreviated rinsing protocols were utilized. Collagen and collagen-based scaffolds were capable of forming engineered tissues in vitro and in vivo with high similarity to the native structures.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guodong Li ◽  
Chung-Nga Ko ◽  
Dan Li ◽  
Chao Yang ◽  
Wanhe Wang ◽  
...  

AbstractImpaired wound healing and ulcer complications are a leading cause of death in diabetic patients. In this study, we report the design and synthesis of a cyclometalated iridium(III) metal complex 1a as a stabilizer of hypoxia-inducible factor-1α (HIF-1α). In vitro biophysical and cellular analyses demonstrate that this compound binds to Von Hippel-Lindau (VHL) and inhibits the VHL–HIF-1α interaction. Furthermore, the compound accumulates HIF-1α levels in cellulo and activates HIF-1α mediated gene expression, including VEGF, GLUT1, and EPO. In in vivo mouse models, the compound significantly accelerates wound closure in both normal and diabetic mice, with a greater effect being observed in the diabetic group. We also demonstrate that HIF-1α driven genes related to wound healing (i.e. HSP-90, VEGFR-1, SDF-1, SCF, and Tie-2) are increased in the wound tissue of 1a-treated diabetic mice (including, db/db, HFD/STZ and STZ models). Our study demonstrates a small molecule stabilizer of HIF-1α as a promising therapeutic agent for wound healing, and, more importantly, validates the feasibility of treating diabetic wounds by blocking the VHL and HIF-1α interaction.


2021 ◽  
Vol 9 (4) ◽  
pp. 868
Author(s):  
Max Maurin ◽  
Florence Fenollar ◽  
Oleg Mediannikov ◽  
Bernard Davoust ◽  
Christian Devaux ◽  
...  

SARS-CoV-2 is currently considered to have emerged from a bat coronavirus reservoir. However, the real natural cycle of this virus remains to be elucidated. Moreover, the COVID-19 pandemic has led to novel opportunities for SARS-CoV-2 transmission between humans and susceptible animal species. In silico and in vitro evaluation of the interactions between the SARS-CoV-2 spike protein and eucaryotic angiotensin-converting enzyme 2 (ACE2) receptor have tentatively predicted susceptibility to SARS-CoV-2 infection of several animal species. Although useful, these data do not always correlate with in vivo data obtained in experimental models or during natural infections. Other host biological properties may intervene such as the body temperature, level of receptor expression, co-receptor, restriction factors, and genetic background. The spread of SARS-CoV-2 also depends on the extent and duration of viral shedding in the infected host as well as population density and behaviour (group living and grooming). Overall, current data indicate that the most at-risk interactions between humans and animals for COVID-19 infection are those involving certain mustelids (such as minks and ferrets), rodents (such as hamsters), lagomorphs (especially rabbits), and felines (including cats). Therefore, special attention should be paid to the risk of SARS-CoV-2 infection associated with pets.


Sign in / Sign up

Export Citation Format

Share Document