scholarly journals Sex Differences in Otolaryngology: Focus on the Emerging Role of Estrogens in Inflammatory and Pro-Resolving Responses

2021 ◽  
Vol 22 (16) ◽  
pp. 8768
Author(s):  
Sheng-Dean Luo ◽  
Tai-Jan Chiu ◽  
Wei-Chih Chen ◽  
Ching-Shuen Wang

Otolaryngology (also known as ear, nose, and throat (ENT)) diseases can be significantly affected by the level of sex hormones, which indicates that sex differences affect the manifestation, pathophysiology, and outcomes of these diseases. Recently, increasing evidence has suggested that proinflammatory responses in ENT diseases are linked to the level of sex hormones. The sex hormone receptors are present on a wide variety of immune cells; therefore, it is evident that they play crucial roles in regulating the immune system and hence affect the disease progression of ENT diseases. In this review, we focus on how sex hormones, particularly estrogens, regulate ENT diseases, such as chronic rhinosinusitis, vocal fold polyps, thyroid cancer, Sjögren’s syndrome, and head and neck cancers, from the perspectives of inflammatory responses and specialized proresolving mediator-driven resolution. This paper aims to clarify why considering sex differences in the field of basic and medical research on otolaryngology is a key component to successful therapy for both males and females in the future.

Endocrinology ◽  
2012 ◽  
Vol 153 (6) ◽  
pp. 2544-2550 ◽  
Author(s):  
Sabra L. Klein

Males and females have the same immunological cells, proteins, and pathways in place to protect against the development of disease. The kinetics, magnitude, and skewing of the responses mounted against pathogens, allergens, toxins, or self-antigens, however, can differ dramatically between the sexes. Generally, females mount higher innate and adaptive immune responses than males, which can result in faster clearance of pathogens but also contributes to increased susceptibility to inflammatory and autoimmune diseases in females compared with males. Hormonal and genetic factors contribute significantly to sex differences in immune function and disease pathogenesis. In particular, the expression of X-linked genes and microRNA as well as sex steroid hormones signaling through hormone receptors in immune cells can affect responses to immunological stimuli differently in males and females. Despite data illustrating profound differences between the sexes in immune function, sex differences in the pathogenesis of disease are often overlooked in biomedical research. Establishing journal policies that require authors to report the sex of their cells, animals, and subjects will improve our understanding of the pathogenesis of diseases, with the long-term goal of personalizing treatments for immune-mediated diseases differently for males and females in an effort to protect us equally.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 8.1-8
Author(s):  
G. Robinson ◽  
K. Waddington ◽  
J. Peng ◽  
A. Radziszewska ◽  
H. Peckham ◽  
...  

Background:Males and females have altered immune responses resulting in variation in autoimmune and cardiovascular disease risk (CVR). Recently, these differences have played a role in the inflammatory response to COVID-19. Sex differences exist in the frequency and activity of immune-cell subsets but mechanisms underlying sexual dimorphism remain unknown. Juvenile-onset systemic lupus erythematosus (JSLE) is an autoimmune disorder that commonly emerges during puberty, has a strong female prevalence (female:male ratio, 4.5:1) and results in an increased CVR. JSLE is characterised by chronic inflammation and dyslipidaemia, where cardiovascular disease is a leading cause of mortality for patients. Our previous work identified a link between immune cell function and lipid metabolism in adult-onset SLE. We hypothesised that sex hormones could influence both lipid metabolism and immune cell function and this could determine sex-specific susceptibility to JSLE and associated CVR.Objectives:We investigated the role of sex hormones in modifying systemic lipid metabolism and inflammation.Methods:Nuclear magnetic resonance spectroscopy based serum metabolomics measuring over 130 lipoproteins (14-subsets with lipid compositions), flow cytometry measuring immune-cells, and RNA-sequencing were used to assess the metabolic and immune profile in young, pre/post-pubertal males (n=10/17) and females (n=10/23) and in individuals with gender-dysphoria (GD) under cross-hormone treatment (trans-male/female, n=26/25). This analysis was also performed on a cohort of post-pubertal male (n=12) and female (n=23) JSLE patients. Data was analysed by logistic regression, balanced random forest machine learning (BRF-ML), differential gene expression (DEG) and pathway analysis.Results:Post-pubertal males had significantly reduced cardio-protective high-density lipoprotein (HDL) subsets (p<0.0001) and increased cardio-pathogenic very-low-density lipoprotein subsets (p<0.0001) compared to females. These differences were not observed pre-puberty and were reversed significantly by cross-hormone treatment in GD individuals, suggesting that sex hormones regulate lipid metabolism in-vivo.BRF-ML (28 immune-cell subsets) identified an increased frequency of anti-inflammatory regulatory T-cells (Tregs) in post-pubertal males compared to females (p=0.0097). These Tregs were also more suppressive in males compared to females. Differences in Treg frequency were seen pre-puberty and were not altered by sex hormone treatment in GD individuals. However, Treg DEGs and functional transcriptomic pathways altered between post-pubertal males and females, including those involved in inflammatory signalling, overlapped with those altered by hormones in GD, suggesting hormones may also drive Treg functional changes. In addition, HDL metabolites modified by hormones showed differential associations with Treg phenotypes between post-pubertal males and females.Strikingly, sex differences in lipoproteins and Tregs were lost in JSLE, suggesting hormone signalling could be dysregulated in the pathogenesis of autoimmunity and could increase CVR for patients.Conclusion:Sex hormones drive altered lipoprotein metabolism and functional transcriptomic pathways in Tregs. Males have a lipoprotein profile associated with increased CVR, but a more anti-inflammatory immune profile compared to females. Together, this could explain sex differences in inflammatory disease susceptibilities and inform future sex-specific therapeutic strategies for the management of both JSLE and CVR.Acknowledgements:Lupus UKRosetrees TrustVersus ArthritisNIHR UCLH Biomedical Research CentreDisclosure of Interests:None declared


2021 ◽  
Vol 22 (9) ◽  
pp. 4620
Author(s):  
Holly J. Woodward ◽  
Dongxing Zhu ◽  
Patrick W. F. Hadoke ◽  
Victoria E. MacRae

Sex differences in cardiovascular disease (CVD), including aortic stenosis, atherosclerosis and cardiovascular calcification, are well documented. High levels of testosterone, the primary male sex hormone, are associated with increased risk of cardiovascular calcification, whilst estrogen, the primary female sex hormone, is considered cardioprotective. Current understanding of sexual dimorphism in cardiovascular calcification is still very limited. This review assesses the evidence that the actions of sex hormones influence the development of cardiovascular calcification. We address the current question of whether sex hormones could play a role in the sexual dimorphism seen in cardiovascular calcification, by discussing potential mechanisms of actions of sex hormones and evidence in pre-clinical research. More advanced investigations and understanding of sex hormones in calcification could provide a better translational outcome for those suffering with cardiovascular calcification.


2021 ◽  
pp. 153537022110196
Author(s):  
Nathalie Fuentes ◽  
Miguel Silva Rodriguez ◽  
Patricia Silveyra

Lung cancer represents the world’s leading cause of cancer deaths. Sex differences in the incidence and mortality rates for various types of lung cancers have been identified, but the biological and endocrine mechanisms implicated in these disparities have not yet been determined. While some cancers such as lung adenocarcinoma are more commonly found among women than men, others like squamous cell carcinoma display the opposite pattern or show no sex differences. Associations of tobacco product use rates, susceptibility to carcinogens, occupational exposures, and indoor and outdoor air pollution have also been linked to differential rates of lung cancer occurrence and mortality between sexes. While roles for sex hormones in other types of cancers affecting women or men have been identified and described, little is known about the influence of sex hormones in lung cancer. One potential mechanism identified to date is the synergism between estrogen and some tobacco compounds, and oncogene mutations, in inducing the expression of metabolic enzymes, leading to enhanced formation of reactive oxygen species and DNA adducts, and subsequent lung carcinogenesis. In this review, we present the literature available regarding sex differences in cancer rates, associations of male and female sex hormones with lung cancer, the influence of exogenous hormone therapy in women, and potential mechanisms mediated by male and female sex hormone receptors in lung carcinogenesis. The influence of biological sex on lung disease has recently been established, thus new research incorporating this variable will shed light on the mechanisms behind the observed disparities in lung cancer rates, and potentially lead to the development of new therapeutics to treat this devastating disease.


2021 ◽  
Author(s):  
Kim Chiok ◽  
Kevin Hutchison ◽  
Lindsay Grace Miller ◽  
Santanu Bose ◽  
Tanya A Miura

Critically ill COVID-19 patients infected with SARS-CoV-2 display signs of generalized hyperinflammation. Macrophages trigger inflammation to eliminate pathogens and repair tissue, but this process can also lead to hyperinflammation and resulting exaggerated disease. The role of macrophages in dysregulated inflammation during SARS-CoV-2 infection is poorly understood. We used SARS-CoV-2 infected and glycosylated soluble SARS-CoV-2 Spike S1 subunit (S1) treated THP-1 human-derived macrophage-like cell line to clarify the role of macrophages in pro-inflammatory responses. Soluble S1 upregulated TNF-α and CXCL10 mRNAs, and induced secretion of TNF-α from THP-1 macrophages. While THP-1 macrophages did not support productive SARS-CoV-2 replication, virus infection resulted in upregulation of both TNF-α and CXCL10 genes. Our study shows that S1 is a key viral component inducing inflammatory response in macrophages, independently of virus replication. Thus, virus-infected or soluble S1-activated macrophages may become sources of pro-inflammatory mediators contributing to hyperinflammation in COVID-19 patients.


2016 ◽  
Vol 18 (4) ◽  
pp. 373-383 ◽  

Contrary to popular belief, sex hormones act throughout the entire brain of both males and females via both genomic and nongenomic receptors. Many neural and behavioral functions are affected by estrogens, including mood, cognitive function, blood pressure regulation, motor coordination, pain, and opioid sensitivity. Subtle sex differences exist for many of these functions that are developmentally programmed by hormones and by not yet precisely defined genetic factors, including the mitochondrial genome. These sex differences, and responses to sex hormones in brain regions and upon functions not previously regarded as subject to such differences, indicate that we are entering a new era in our ability to understand and appreciate the diversity of gender-related behaviors and brain functions.


2018 ◽  
Vol 8 (9) ◽  
pp. 163 ◽  
Author(s):  
Caroline Gurvich ◽  
Kate Hoy ◽  
Natalie Thomas ◽  
Jayashri Kulkarni

Hormones of the hypothalamic-pituitary-gonadal (HPG) axis that regulate reproductive function have multiple effects on the development, maintenance and function of the brain. Sex differences in cognitive functioning have been reported in both health and disease, which may be partly attributed to sex hormones. The aim of the current paper was to provide a theoretical review of how sex hormones influence cognitive functioning across the lifespan as well as provide an overview of the literature on sex differences and the role of sex hormones in cognitive decline, specifically in relation to Alzheimer’s disease (AD). A summary of current hormone and sex-based interventions for enhancing cognitive functioning and/or reducing the risk of Alzheimer’s disease is also provided.


Metabolites ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 372 ◽  
Author(s):  
Karl J. Harber ◽  
Kyra E. de Goede ◽  
Sanne G. S. Verberk ◽  
Elisa Meinster ◽  
Helga E. de Vries ◽  
...  

Immunometabolism revealed the crucial role of cellular metabolism in controlling immune cell phenotype and functions. Macrophages, key immune cells that support progression of numerous inflammatory diseases, have been well described as undergoing vast metabolic rewiring upon activation. The immunometabolite succinate particularly gained a lot of attention and emerged as a crucial regulator of macrophage responses and inflammation. Succinate was originally described as a metabolite that supports inflammation via distinct routes. Recently, studies have indicated that succinate and its receptor SUCNR1 can suppress immune responses as well. These apparent contradictory effects might be due to specific experimental settings and particularly the use of distinct succinate forms. We therefore compared the phenotypic and functional effects of distinct succinate forms and receptor mouse models that were previously used for studying succinate immunomodulation. Here, we show that succinate can suppress secretion of inflammatory mediators IL-6, tumor necrosis factor (TNF) and nitric oxide (NO), as well as inhibit Il1b mRNA expression of inflammatory macrophages in a SUCNR1-independent manner. We also observed that macrophage SUCNR1 deficiency led to an enhanced inflammatory response without addition of exogenous succinate. While our study does not reveal new mechanistic insights into how succinate elicits different inflammatory responses, it does indicate that the inflammatory effects of succinate and its receptor SUCNR1 in macrophages are clearly context dependent.


2019 ◽  
Vol 116 (14) ◽  
pp. 2226-2238 ◽  
Author(s):  
Tetsuo Horimatsu ◽  
Andra L Blomkalns ◽  
Mourad Ogbi ◽  
Mary Moses ◽  
David Kim ◽  
...  

Abstract Aims Chronic adventitial and medial infiltration of immune cells play an important role in the pathogenesis of abdominal aortic aneurysms (AAAs). Nicotinic acid (niacin) was shown to inhibit atherosclerosis by activating the anti-inflammatory G protein-coupled receptor GPR109A [also known as hydroxycarboxylic acid receptor 2 (HCA2)] expressed on immune cells, blunting immune activation and adventitial inflammatory cell infiltration. Here, we investigated the role of niacin and GPR109A in regulating AAA formation. Methods and results Mice were supplemented with niacin or nicotinamide, and AAA was induced by angiotensin II (AngII) infusion or calcium chloride (CaCl2) application. Niacin markedly reduced AAA formation in both AngII and CaCl2 models, diminishing adventitial immune cell infiltration, concomitant inflammatory responses, and matrix degradation. Unexpectedly, GPR109A gene deletion did not abrogate the protective effects of niacin against AAA formation, suggesting GPR109A-independent mechanisms. Interestingly, nicotinamide, which does not activate GPR109A, also inhibited AAA formation and phenocopied the effects of niacin. Mechanistically, both niacin and nicotinamide supplementation increased nicotinamide adenine dinucleotide (NAD+) levels and NAD+-dependent Sirt1 activity, which were reduced in AAA tissues. Furthermore, pharmacological inhibition of Sirt1 abrogated the protective effect of nicotinamide against AAA formation. Conclusion Niacin protects against AAA formation independent of GPR109A, most likely by serving as an NAD+ precursor. Supplementation of NAD+ using nicotinamide-related biomolecules may represent an effective and well-tolerated approach to preventing or treating AAA.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ajay Pradhan ◽  
Per-Erik Olsson

Abstract Coronavirus disease 2019 (COVID-19) has shown high infection and mortality rates all over the world, and despite the global efforts, there is so far no specific therapy available for COVID-19. Interestingly, while the severity and mortality of COVID-19 are higher in males than in females, the underlying molecular mechanisms are unclear. In this review, we explore sex-related differences that may be contributing factors to the observed male-biased mortality from COVID-19. Males are considered the weaker sex in aspects related to endurance and infection control. Studies show that viral RNA clearance is delayed in males with COVID-19. A recent study has indicated that the testis can harbor coronavirus, and consequently, males show delayed viral clearance. However, the role of testis involvement in COVID-19 severity and mortality needs further research. Males and females show a distinct difference in immune system responses with females eliciting stronger immune responses to pathogens. This difference in immune system responses may be a major contributing factor to viral load, disease severity, and mortality. In addition, differences in sex hormone milieus could also be a determinant of viral infections as estrogen has immunoenhancing effects while testosterone has immunosuppressive effects. The sex-specific severity of COVID-19 infections indicates that further research on understanding the sex differences is needed. Inclusion of both males and females in basic research and clinical trials is required to provide critical information on sex-related differences that may help to better understand disease outcome and therapy.


Sign in / Sign up

Export Citation Format

Share Document