scholarly journals Metabolome Profiling of Heat Priming Effects, Senescence, and Acclimation of Bread Wheat Induced by High Temperatures at Different Growth Stages

2021 ◽  
Vol 22 (23) ◽  
pp. 13139
Author(s):  
Sachiko Matsunaga ◽  
Yuji Yamasaki ◽  
Ryosuke Mega ◽  
Yusuke Toda ◽  
Kinya Akashi ◽  
...  

Our previous study described stage-specific responses of ‘Norin 61’ bread wheat to high temperatures from seedling to tillering (GS1), tillering to flowering (GS2), flowering to full maturity stage (GS3), and seedling to full maturity stage (GS1–3). The grain development phase lengthened in GS1 plants; source tissue decreased in GS2 plants; rapid senescence occurred in GS3 plants; all these effects occurred in GS1–3 plants. The present study quantified 69 flag leaf metabolites during early grain development to reveal the effects of stage-specific high-temperature stress and identify markers that predict grain weight. Heat stresses during GS2 and GS3 showed the largest shifts in metabolite contents compared with the control, followed by GS1–3 and GS1. The GS3 plants accumulated nucleosides related to the nucleotide salvage pathway, beta-alanine, and serotonin. Accumulation of these compounds in GS1 plants was significantly lower than in the control, suggesting that the reduction related to the high-temperature priming effect observed in the phenotype (i.e., inhibition of senescence). The GS2 plants accumulated a large quantity of free amino acids, indicating residual effects of the previous high-temperature treatment and recovery from stress. However, levels in GS1–3 plants tended to be close to those in the control, indicating an acclimation response. Beta-alanine, serotonin, tryptophan, proline, and putrescine are potential molecular markers that predict grain weight due to their correlation with agronomic traits.

2021 ◽  
Vol 22 (13) ◽  
pp. 6942
Author(s):  
Sachiko Matsunaga ◽  
Yuji Yamasaki ◽  
Yusuke Toda ◽  
Ryosuke Mega ◽  
Kinya Akashi ◽  
...  

Bread wheat (Triticum aestivum) is less adaptable to high temperatures than other major cereals. Previous studies of the effects of high temperature on wheat focused on the reproductive stage. There are few reports on yield after high temperatures at other growth stages. Understanding growth-stage-specific responses to heat stress will contribute to the development of tolerant lines suited to high temperatures at various stages. We exposed wheat cultivar “Norin 61” to high temperature at three growth stages: seedling–tillering (GS1), tillering–flowering (GS2), and flowering–maturity (GS3). We compared each condition based on agronomical traits, seed maturity, and photosynthesis results. Heat at GS2 reduced plant height and number of grains, and heat at GS3 reduced the grain formation period and grain weight. However, heat at GS1 reduced senescence and prolonged grain formation, increasing grain weight without reducing yield. These data provide fundamental insights into the biochemical and molecular adaptations of bread wheat to high-temperature stresses and have implications for the development of wheat lines that can respond to high temperatures at various times of the year.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2535
Author(s):  
Jose Lucas Peñalver-Soto ◽  
Alberto Garre ◽  
Arantxa Aznar ◽  
Pablo S. Fernández ◽  
Jose A. Egea

In food processes, optimizing processing parameters is crucial to ensure food safety, maximize food quality, and minimize the formation of potentially toxigenic compounds. This research focuses on the simultaneous impacts that severe heat treatments applied to food may have on the formation of harmful chemicals and on microbiological safety. The case studies analysed consider the appearance/synthesis of acrylamide after a sterilization heat treatment for two different foods: pureed potato and prune juice, using Geobacillus stearothermophilus as an indicator. It presents two contradictory situations: on the one hand, the application of a high-temperature treatment to a low acid food with G. stearothermophilus spores causes their inactivation, reaching food safety and stability from a microbiological point of view. On the other hand, high temperatures favour the appearance of acrylamide. In this way, the two objectives (microbiological safety and acrylamide production) are opposed. In this work, we analyse the effects of high-temperature thermal treatments (isothermal conditions between 120 and 135 °C) in food from two perspectives: microbiological safety/stability and acrylamide production. After analysing both objectives simultaneously, it is concluded that, contrary to what is expected, heat treatments at higher temperatures result in lower acrylamide production for the same level of microbial inactivation. This is due to the different dynamics and sensitivities of the processes at high temperatures. These results, as well as the presented methodology, can be a basis of analysis for decision makers to design heat treatments that ensure food safety while minimizing the amount of acrylamide (or other harmful substances) produced.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244198
Author(s):  
Xiaoxiao Qin ◽  
Panpan Li ◽  
Shaowei Lu ◽  
Yanchuan Sun ◽  
Lifeng Meng ◽  
...  

High temperatures induce early bolting in lettuce (Lactuca sativa L.), which decreases both quality and production. However, knowledge of the molecular mechanism underlying high temperature promotes premature bolting is lacking. In this study, we compared lettuce during the bolting period induced by high temperatures (33/25 °C, day/night) to which raised under controlled temperatures (20/13 °C, day/night) using iTRAQ-based phosphoproteomic analysis. A total of 3,814 phosphorylation sites located on 1,766 phosphopeptides from 987 phosphoproteins were identified after high-temperature treatment,among which 217 phosphoproteins significantly changed their expression abundance (116 upregulated and 101 downregulated). Most phosphoproteins for which the abundance was altered were associated with the metabolic process, with the main molecular functions were catalytic activity and transporter activity. Regarding the functional pathway, starch and sucrose metabolism was the mainly enriched signaling pathways. Hence, high temperature influenced phosphoprotein activity, especially that associated with starch and sucrose metabolism. We suspected that the lettuce shorten its growth cycle and reduce vegetative growth owing to changes in the contents of starch and soluble sugar after high temperature stress, which then led to early bolting/flowering. These findings improve our understanding of the regulatory molecular mechanisms involved in lettuce bolting.


1998 ◽  
Vol 49 (8) ◽  
pp. 1287 ◽  
Author(s):  
M. A. B. Wallwork ◽  
S. J. Logue ◽  
L. C. MacLeod ◽  
C. F. Jenner

Short periods of high temperatures (up to 35°C) during mid grain filling appear to reduce yield and quality in barley. Plants of 3 malting barley varieties, Schooner, Arapiles, and Sloop (a new South Australian malting variety), were grown under constant environment conditions from germination to maturity and exposed to 5 days of high temperatures (up to 35°C) during mid grain filling. Schooner and Sloop showed similar patterns of accumulation of dry matter under control conditions (21°C/16°C, day/night temperature) and in response to high temperatures. In all varieties, the reduction in starch accumulation represented the most significant detrimental effect of high temperature and made the greatest contribution to the reduction in final grain weight. The reduction in absolute grain nitrogen (N) in heat-treated Arapiles grains represents a potentially important response under high temperature conditions. In this study, water loss did not have a decisive role in the termination of grain filling. Continued accumulation of endosperm dry matter at low moisture levels suggested that water distribution and/or components of water potential may be more important than overall water content in the cessation of grain filling. Final grain composition depended not only on the amount of endosperm storage component present in the grain but also on the contribution of the non-endosperm components (including the embryo and husk) to final grain dry weight. In some cases, changes in the contribution made by the non-endosperm components of the grain to final grain weight masked important high temperature effects on key endosperm storage components. Hot water extract (HWE) values were similar within treatments and ranged from 73% to 78%. High temperature exposure reduced HWE for all varieties. Malt b-glucan was lower in heat-treated grains than in control grains. Despite relatively high malt protein levels in all varieties, higher free amino N levels in heat-treated grains indicated a higher protein modification than in control grains.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jae-Ryoung Park ◽  
Eun-Gyeong Kim ◽  
Yoon-Hee Jang ◽  
Kyung-Min Kim

Abstract Background Recent temperature increases due to rapid climate change have negatively affected rice yield and grain quality. Particularly, high temperatures during right after the flowering stage reduce spikelet fertility, while interfering with sugar energy transport, and cause severe damage to grain quality by forming chalkiness grains. The effect of high-temperature on spikelet fertility and grain quality during grain filling stage was evaluated using a double haploid line derived from another culture of F1 by crossing Cheongcheong and Nagdong cultivars. Quantitative trait locus (QTL) mapping identifies candidate genes significantly associated with spikelet fertility and grain quality at high temperatures. Results Our analysis screened OsSFq3 that contributes to spikelet fertility and grain quality at high-temperature. OsSFq3 was fine-mapped in the region RM15749-RM15689 on chromosome 3, wherein four candidate genes related to the synthesis and decomposition of amylose, a starch component, were predicted. Four major candidate genes, including OsSFq3, and 10 different genes involved in the synthesis and decomposition of amylose and amylopectin, which are starch constituents, together with relative expression levels were analyzed. OsSFq3 was highly expressed during the initial stage of high-temperature treatment. It exhibited high homology with FLOURY ENDOSPERM 6 in Gramineae plants and is therefore expected to function similarly. Conclusion The QTL, major candidate genes, and OsSFq3 identified herein could be effectively used in breeding rice varieties to improve grain quality, while tolerating high temperatures, to cope with climate changes. Furthermore, linked markers can aid in marker-assisted selection of high-quality and -yield rice varieties tolerant to high temperatures.


1999 ◽  
Vol 26 (5) ◽  
pp. 453 ◽  
Author(s):  
Roxana Savin ◽  
Daniel F. Calderini ◽  
Gustavo A. Slafer ◽  
Leonor G. Abeledo

Individual grain weight is an important source of variation for grain yield in wheat. The aim of this study was to investigate the effect of short periods of high temperature immediately pre-anthesis, or during post-anthesis, on grain weight under field conditions. Thus, two wheat cultivars of different grain weight potential were sown on four different sowing dates to provide different temperature conditions during the pre- and post-anthesis periods. In addition, for two sowings, acrylic boxes were installed to increase spike temperature either immediately before anthesis, or during the lineal phase of the grain-filling period. Final grain weight was significantly affected by sowing date, genotype and grain position on the spike. Grain weight showed a clear relationship with the average temperature of the grain filling period, but this relationship was either linear or curvilinear, depending on the cultivar. Both high temperature treatments, i.e. at pre- or post-anthesis, significantly diminished final grain weight, and their effect was similar with the exception of heavier grains, which were unresponsive to the high temperature treatment at pre-anthesis. Finally, a better understanding of final grain weight was reached when temperatures from the pre-anthesis period were included in the analysis of grain weight response to temperature.


2015 ◽  
Vol 732 ◽  
pp. 111-114 ◽  
Author(s):  
Marcel Jogl ◽  
Pavel Reiterman ◽  
Ondřej Holčapek ◽  
Jaroslava Koťátková

Article presents the results of an experimental program aimed at investigating of the mechanical properties of composites based on aluminous cement with the addition of basalt fibres, which could be used in the manufacture of components resistant to high temperatures, including the retention of mechanical properties. Silica composites based on Portland cement and silica aggregates are not able to resist the effects of high temperatures [1], therefore a heat resistant mixtures in this experiment includes only components that are able to resist the effects of high temperatures.


2021 ◽  
Author(s):  
Jae-Ryoung Park ◽  
Eun-Gyeong Kim ◽  
Yoon-Hee Jang ◽  
Kyung-Min Kim

Abstract Background Recent temperature increases due to rapid climate change have negatively affected rice yield and grain quality. Particularly, high temperatures during rice filling stage from the flowering stage reduce spikelet fertility, while interfering with sugar energy transport, and cause severe damage to grain quality by forming chalkiness grains. The effect of high-temperature on spikelet fertility and grain quality during grain filling stage was evaluated using a double haploid line derived from anther culture of F1 by crossing Cheongcheong and Nagdong cultivars. Quantitative trait locus (QTL) mapping identifies candidate genes significantly associated with spikelet fertility and grain quality at high temperatures. Results Our analysis screened OsSFq3 that contributes to spikelet fertility and grain quality at high-temperature. OsSFq3 was fine-mapped in the region RM15749-RM15689 on chromosome 3, wherein four candidate genes related to the synthesis and decomposition of amylose, a starch component, were predicted. Four major candidate genes, including OsSFq3, and 10 different genes involved in the synthesis and decomposition of amylose and amylopectin, which are starch constituents, together with relative expression levels were analyzed. OsSFq3 was highly expressed during the initial stage of high-temperature treatment. It exhibited high homology with FLOURY ENDOSPERM 6 in Gramineae plants and is therefore expected to function similarly. Conclusion The QTL, major candidate genes, and OsSFq3 identified herein could be effectively used in breeding rice varieties to improve grain quality, while tolerating high temperatures, to cope with climate changes. Furthermore, linked markers can aid in marker-assisted selection of high-quality and -yield rice varieties tolerant to high temperatures.


2013 ◽  
Vol 138 (6) ◽  
pp. 443-451 ◽  
Author(s):  
Dongfeng Liu ◽  
Junbei Ni ◽  
Ruiyuan Wu ◽  
Yuanwen Teng

Sorbitol is the main photosynthetic product and primary translocated carbohydrate in the Rosaceae and plays fundamental roles in plant growth, fruit quality, and osmotic stress adaptation. To investigate the effect of frequent high temperature during advanced fruit development on fruit quality of chinese sand pear [Pyrus pyrifolia (Burm. f.) Nakai], we analyzed sorbitol metabolism in mature leaves and fruit flesh of potted ‘Wonhwang’ pear trees. In mature leaves, sorbitol synthesis catalyzed by NADP+-dependent sorbitol-6-phosphate dehydrogenase (S6PDH) was repressed, while sorbitol utilization mainly catalyzed by NAD+-dependent sorbitol dehydrogenase (NAD+-SDH) and NADP+-dependent sorbitol dehydrogenase (NADP+-SDH) was higher than that before high-temperature treatment, which resulted in decreased sorbitol accumulation. In contrast, sucrose accumulation in mature leaves was significantly enhanced in response to high temperatures. In fruit flesh, accumulation of sorbitol and sucrose was increased at the time of harvest under high temperatures. Among sorbitol metabolic enzymes, only NAD+-SDH was sensitive to high temperature in fruit flesh, and significant decrease of NAD+-SDH activity indicated that the fruit sorbitol-uptake capacity was undermined under high temperatures. Transcription analysis revealed tissue-specific responses of NAD+-SDH genes (PpSDH1, PpSDH2, and PpSDH3) to high-temperature treatment. The NAD+-SDH activity and regulation of PpSDH1 and PpSDH3 were positively correlated in mature leaves. However, the downregulation of PpSDH1 and PpSDH2 was consistent with decreased enzyme activity in the fruit flesh. With regard to sorbitol transport, two sorbitol transporter genes (PpSOT1 and PpSOT2) were isolated, and downregulation of PpSOT2 expression in mature leaves indicated that the sorbitol-loading capability decreased under high-temperature conditions because of the limited sorbitol supply. These findings suggested that sorbitol metabolism responded differently in mature leaves and fruit flesh under high temperature, and that these dissimilar responses influenced fruit quality and may play important roles in adaptation to high temperatures.


Sign in / Sign up

Export Citation Format

Share Document