scholarly journals Brassinazole Resistant 1 Activity Is Organ-Specific and Genotype-Dependent in Barley Seedlings

2021 ◽  
Vol 22 (24) ◽  
pp. 13572
Author(s):  
Jolanta Groszyk ◽  
Magdalena Szechyńska-Hebda

Brassinosteroids (BRs) control many plant developmental processes by regulating different groups of transcription factors, and consequently gene expressions. The most known is BZR1, the main member of the BES1 family. However, to date, it is poorly characterized in crop species. The main goal of the presented study was to identify HvBZR1 and determine its activity in 5-day-old barley (the stage is related to one leaf on the main shoot and a few seminal roots) using two cultivars with different sensitivities to BRs. Using the anti-OsBZR1 antibody, we identified the forms of HvBZR1 transcription factor with different molecular weights, which can be related to different phosphorylated forms of serine/threonine residues. Two phosphorylated forms in the shoots and one dephosphorylated form in the roots were determined. A minor amount of the dephosphorylated form of the HvBZR1 in the Haruna Nijo shoots was also found. The phosphorylated forms gave a higher band intensity for Golden Promise than Haruna Nijo. The bands were similar in their intensity, when two different phosphorylated forms were compared in Golden Promise, while a reduced intensity was detected for the phosphorylated form with a lower molecular weight for Haruna Nijo. Degradation of the phosphorylated forms in the shoots (complete degradation in Golden Promise and significant but not complete in Haruna Nijo) and the presence of the dephosphorylated form in the roots were proven for the etiolated barley. In the case of Haruna Nijo, a wider range of the regulators of the BR biosynthesis and signaling pathways induced the expected effects, 24-EBL (0.001 µM) and bikinin (10 and 50 µM) caused low amount of the phosphorylated forms, and at the same time, a tiny band of dephosphorylated form was detected. However, the expression of genes related to the BR biosynthesis and signaling pathways was not a determinant for the protein amount.

Author(s):  
Nadine S. Rögner ◽  
Veronika Mall ◽  
Martin Steinhaus

AbstractAn odorant screening by gas chromatography–olfactometry (GC–O) and a crude aroma extract dilution analysis (AEDA) applied to the volatiles isolated from a light and a dark liquid malt extract (LME) by solvent extraction and solvent-assisted flavour evaporation (SAFE) identified 28 odorants. Fifteen major odorants were subsequently quantitated and odour activity values (OAVs) were calculated as ratio of the concentration to the respective odour threshold value (OTV). Important odorants in the light LME included 3-(methylsulfanyl)propanal (OAV 1500), (E)-β-damascenone (OAV 430), and 4-ethenyl-2-methoxyphenol (OAV 91). In the dark LME, sotolon (OAV 780), 3-(methylsulfanyl)propanal (OAV 550), (E)-β-damascenone (OAV 410), acetic acid (OAV 160), and maltol (OAV 120) were of particular importance. To get an insight into the changes during malt extract production, the quantitations were extended to the malt used as the starting material for both LMEs. Addition of a minor amount of water to malt before volatile extraction was shown to be effective to cover the free as well as the bound malt odorants. Results showed that some LME odorants originated from the starting material whereas others were formed during processing. Important process-induced LME odorants included (E)-β-damascenone and 4-ethenyl-2-methoxyphenol in the light LME as well as maltol, sotolon, (E)-β-damascenone, and 2-methoxyphenol in the dark LME. In summary, the odorant formation during LME production was shown to be more important than the transfer of odorants from the malt.


2012 ◽  
Vol 7 (2) ◽  
pp. 192-200
Author(s):  
Jacek Turyn ◽  
Adriana Mika ◽  
Piotr Stepnowski ◽  
Julian Swierczynski

AbstractIt is generally accepted that the location of body fat deposits may play an important role in the risk of developing some endocrine and metabolic diseases. We have studied the effect of food restriction and food restriction/refeeding, often practiced by individuals trying to lose body weight, on the expression of genes which are associated with obesity and certain metabolic disorders in inguinal, epididymal, and perirenal rat white adipose tissues. Gene expression was analyzed by real time semi-quantitative polymerase chain reaction and by Western blot. We found that prolonged food restriction caused a significant decrease of body and adipose tissue mass as well as the increase of Scd1 and Elovl6 gene expressions in all main rat adipose tissue deposits. Food restriction/refeeding caused increases of: a) Scd1 and Elovl6 mRNA levels in adipose tissue, b) Scd1 protein level and c) desaturation index in adipose tissue. The increased expression of both genes was unusually high in inguinal adipose tissue. The results suggest that the increase of Scd1 and Elovl6 gene expressions in white adipose tissue by prolonged food restriction and prolonged food restriction/refeeding may contribute to accelerated fat recovery that often occurs in individuals after food restriction/refeeding.


1975 ◽  
Vol 55 (2) ◽  
pp. 225-233 ◽  
Author(s):  
H. KODAMA ◽  
M. D. WEBBER

Two specimens of hydroxy aluminum phosphate interlayer materials in montmorillonite clay were prepared with 7.20 meq Al and 11.29 meq H3PO4/g clay and with 14.40 meq Al and 22.58 meq H3PO4/g clay, and the resulting complexes studied by chemical and mineralogical methods. Both interlayer materials were slightly positively charged and except for different water contents their chemical compositions were almost identical. They contained Al, PO4 and H2O and a minor amount of Ca and approximated hydrous AlPO4∙nH2O. The mole ratios of Al:Ca:PO4:OH were 1.00:0.08:0.92:0.24 and 1.00:0.05:0.91:0.24, respectively. The interlayer materials appeared to be loosely packed and distributed sparsely in interspaces of the montmorillonite. The degree of packing was greater for the preparation with the larger amount of interlayer material. The materials increased the montmorillonite basal spacing to 23.3 Å under air-dry condition (30–40% relative humidity) but did not affect the lateral dimensions. The basal spacing varied somewhat with relative humidity at room temperature and decreased markedly as water was driven off by heating. Heat treatments between room temperature and 300 C sharply reduced the d001 spacings to 16.7 Å which persisted up to 700 C. It is postulated that the large basal spacings occur because the hydrated interlayer materials have a framework structure with tunnels along the c-axis. This being so, changes in the spacings with different humidities might result from the movement of water molecules among interstitial spaces existing around and between the loosely distributed molecules of interlayer material. The 16.7 Å spacing for the dehydrated phase corresponds to the sum of 7.0 Å, the edge dimension of an orthorhombic anhydrous AlPO4 and 9.7 Å, the silicate layer thickness.


1978 ◽  
Vol 169 (3) ◽  
pp. 567-575 ◽  
Author(s):  
Wendy Cammer ◽  
Lesley Z. Bieler ◽  
William T. Norton

Degradation of myelin basic protein during incubations with high concentrations of horseradish peroxidase has been demonstrated [Johnson & Cammer (1977) J. Histochem. Cytochem.25, 329–336]. Possible mechanisms for the interaction of the basic protein with peroxidase were investigated in the present study. Because the peroxidase samples previously observed to degrade basic protein were mixtures of isoenzymes, commercial preparations of the separated isoenzymes were tested, and all three degraded basic protein, but to various extents. Three other basic proteins, P2 protein from peripheral nerve myelin, lysozyme and cytochrome c, were not degraded by horseradish peroxidase under the same conditions. Inhibitor studies suggested a minor peroxidatic component in the reaction. Therefore the peroxidatic reaction with basic protein was studied by using low concentrations of peroxidase along with H2O2. Horseradish peroxidase plus H2O2 caused the destruction of basic protein, a reaction inhibited by cyanide, azide, ferrocyanide, tyrosine, di-iodotyrosine and catalase. Lactoperoxidase plus H2O2 and myoglobin plus H2O2 were also effective in destroying the myelin basic protein. Low concentrations of horseradish peroxidase plus H2O2 were not active against other basic proteins, but did destroy casein and fibrinogen. Although high concentrations of peroxidase alone degraded basic protein to low-molecular-weight products, suggesting the operation of a proteolytic enzyme contaminant in the absence of H2O2, incubations with catalytic concentrations of peroxidase in the presence of H2O2 converted basic protein into products with high molecular weights. Our data suggest a mechanism for the latter, peroxidatic, reaction where polymers would form by linking the tyrosine side chains in basic-protein molecules. These data show that the myelin basic protein is unusually susceptible to peroxidatic reactions.


1980 ◽  
Vol 58 (21) ◽  
pp. 2199-2202 ◽  
Author(s):  
R. A. Burt ◽  
Y. Chiang ◽  
A. J. Kresge

The hydrolysis of 2-methoxy-2,3-dihydropyran shows a normal isotope effect (kH/kD > 1) under catalysis by the hydrogen ion and gives an accurately linear dependence of reaction rate upon undissociated acid concentration in cyanoacetic acid and formic acid buffer solutions. This substrate, therefore, unlike its higher homolog, 9-methoxyoxacyclonon-2-ene, provides no evidence in support of an anything but a normal mechanism for vinyl ether hydrolysis. Analysis of the hydrogen isotope effect suggests that a minor amount (8%) of this hydrolysis occurs via reaction of the acetal functional group.


2021 ◽  
Vol 11 (23) ◽  
pp. 11410
Author(s):  
Gea Prioglio ◽  
Silvia Agnelli ◽  
Stefano Pandini ◽  
Maurizio Galimberti

Silica-based rubber composites have tremendous importance, as they allow the reduction in hysteresis in demanding dynamic-mechanical applications such as tire compounds and hence have a lower environmental impact. However, they also present drawbacks such as poor rheological behavior. In this work, an innovative silica-based hybrid filler system was developed, obtaining a rubber composite with an improved set of properties. A nanosized high surface area graphite (HSAG) was functionalized with 2-(2,5-dimethyl-1H-pyrrol-1-yl)propane-1,3-diol, serinol pyrrole (SP), through a simple process characterized by a high carbon efficiency. The HSAG-SP adduct, with about nine parts of SP per hundred parts of carbon filler, was used to form a hybrid filler system with silica. An elastomeric composite, with poly(styrene-co-butadiene) from anionic polymerization and poly(1,4-cis-isoprene) from Hevea brasiliensis was prepared with 50 parts of silica, which was replaced in a minor amount (15%) by either pristine HSAG or HSAG-SP. The best set of composite properties was obtained with HSAG-SP: the same dynamic rigidity and hysteresis and tensile properties of the silica-based material and appreciably better rheological properties, particularly in terms of flowability. This work paves the way for a new generation of silica-based composites, with improved properties, based on a hybrid filler system with a nanosized edge functionalized graphite.


2021 ◽  
Vol 9 (10) ◽  
pp. e003671
Author(s):  
Kim E Kortekaas ◽  
Saskia J Santegoets ◽  
Liselotte Tas ◽  
Ilina Ehsan ◽  
Pornpimol Charoentong ◽  
...  

BackgroundA profound insight into the immune landscape of vulvar squamous cell carcinoma (VSCC) is lacking. Here, an in-depth interrogation of T cell infiltration, local immune contexture, signaling pathways and checkpoint molecule expression was performed in early-stage and late-stage VSCC.MethodsThe type, location, and infiltration pattern of T cells were studied in 109 patients with primary VSCC FIGO stage I–III. RNA expression of genes involved in immune oncology and oncogenic signaling pathways was analyzed in 40 VSCC, matched for prognostic clinicopathological variables, analyzed for HPV and p53 status, and selected based on T cell infiltration.ResultsHigh intraepithelial infiltration with CD4 or CD8 T cells was associated with longer overall and recurrence-free survival and formed an independent prognostic factor, outperforming molecular subtype and stage of the disease. Strong T cell infiltrated VSCC displayed a coordinated immune response reflected by a positive association between T cells and different lymphocyte and myeloid cell subsets. The expression of genes involved in the migration of T cells and myeloid cells, T cell activation and costimulation, interferon (IFN)-γ signaling, cytotoxicity and apoptosis was higher than in low infiltrated tumors. An active immune signaling profile was observed in all inflamed, part of the altered-excluded and not in altered-immunosuppressed or deserted VSCC. While several checkpoint molecules were overexpressed, only PD-L1 expression displayed discriminatory ability and clinical usefulness. High PD-L1 expression was detected in all inflamed and ~60% of the altered-excluded VSCC.ConclusionAn active immune signaling profile is present in 35% of primary FIGO I–III VSCCs, suggesting potential responsiveness to neoadjuvant PD-1/PD-L1 immunotherapy.


2020 ◽  
Vol 2 (6) ◽  
Author(s):  
Louise Eydoux ◽  
Emily C. Farrer

Symbiotic microbes that live within plant hosts can exhibit a range in function from mutualistic to pathogenic, but the reason for this lifestyle switching remains largely unknown. Here we tested whether environmental stress, specifically salinity, is a factor that can trigger lifestyle switching in a fungus mainly known as a pathogen, Fusarium solani. F. solani was isolated from roots of Phragmites australis (common reed) in saline coastal marshes of Louisiana, USA, and we used Oryza sativa (rice) as a model organism from wetland environments to test the symbiont lifestyle. We plated rice seeds on control plates or plates with F. solani at three levels of salinity (0, 8 and 16 p.p.t.), then assessed germination and seedling growth after 20 days. Salinity strongly reduced percentage germination, slowed the timing of germination and reduced growth of rice. F. solani slowed germination, and it also caused a minor increase in root growth at medium salinity and a minor decrease in root growth at high salinity. Overall, despite being a common pathogen in other crop species (peas, beans, potatoes and many types of cucurbits), we found little evidence that F. solani has a strong pathogenic lifestyle in rice and we found weak evidence that pathogenicity may increase slightly with elevated salinity. These results have implications for both crops and native plant health in the future as soil salinization increases worldwide.


1997 ◽  
Vol 12 (3) ◽  
pp. 805-811 ◽  
Author(s):  
Wei-Chang Lee ◽  
Shyan-Lung Chung

A combustion synthesis (SHS) process has been developed for the synthesis of Si3N4 powder under low nitrogen pressures. Si and NaN3 powders were used as the reactants, and NH4Cl powder was added as a catalytic agent. These powders were mixed and pressed into a cylindrical compact. The compact was wrapped up with an igniting agent (i.e., Ti + C), and the synthesis reaction was triggered by the combustion of the igniting agent. Addition of NH4Cl was found necessary for the combustion synthesis reaction under low nitrogen pressures (< 1.2 MPa). The product as synthesized is mostly in the form of agglomerated fine particles (0.1–1 μm in diameter) and is composed mainly of α-phase and a minor amount of β-phase. Effects of various experimental parameters (N2 pressure, NaN3, NH4Cl, and Si3N4 contents) on the product conversion and the combustion temperature were investigated. A possible reaction mechanism was proposed that explains the effects of the experimental parameters on the synthesis reaction.


Sign in / Sign up

Export Citation Format

Share Document