scholarly journals The Use of Some Clay Minerals as Natural Resources for Drug Carrier Applications

2018 ◽  
Vol 9 (4) ◽  
pp. 58 ◽  
Author(s):  
Marina Massaro ◽  
Carmelo Colletti ◽  
Giuseppe Lazzara ◽  
Serena Riela

The goal of modern research is to use environmentally preferable materials. In this context, clay minerals are emerging candidates for their bio- and ecocompatibility, low cost and natural availability. Clay minerals present different morphologies according to their layer arrangements. The use of clay minerals, especially in biomedical applications is known from ancient times and they are regaining attention in recent years. The most representative clay minerals are kaolinit, montmorillonite, sepiolites and halloysite. This review summarizes some clay minerals and their derivatives for application as nanocontainer for biologically active species.

2020 ◽  
Vol 21 (9) ◽  
pp. 661-673 ◽  
Author(s):  
Mohammed Asadullah Jahangir ◽  
Chettupalli Anand ◽  
Abdul Muheem ◽  
Sadaf Jamal Gilani ◽  
Mohamad Taleuzzaman ◽  
...  

Herbal medicines are being used since ancient times and are an important part of the alternative and traditional medicinal system. In recent decades, scientists are embracing herbal medicines based on the fact that a number of drugs that are currently in use are derived directly or indirectly from plant sources. Moreover, herbal drugs have lesser side effects, albeit are potentially strong therapeutic agents. The herbal medicine market is estimated to be around US $62 billion globally. Herbal medicine has gained widespread acceptance due to its low toxicity, low cost, ease of accessibility and efficacy in treating difficult diseases. Safety and efficacy are another important factors in the commercialization process of herbal medicines. Nanotechnology has been shown to be potentially effective in improving the bioactivity and bioavailability of herbal medicines. Development of nano-phytomedicines (or by reducing the size of phytomedicine), attaching polymers with phytomedicines and modifying the surface properties of herbal drugs, have increased the solubility, permeability and eventually the bioavailability of herbal formulations. Novel formulations such as niosomes, liposomes, nanospheres, phytosomes etc., can be exploited in this area. This article reviews herbal medicines, which have prominent activity in the Central Nervous System (CNS) disorders and reported nano-phytomedicines based delivery systems.


Drones ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 9
Author(s):  
Adrien Michez ◽  
Stéphane Broset ◽  
Philippe Lejeune

In the context of global biodiversity loss, wildlife population monitoring is a major challenge. Some innovative techniques such as the use of drones—also called unmanned aerial vehicle/system (UAV/UAS)—offer promising opportunities. The potential of UAS-based wildlife census using high-resolution imagery is now well established for terrestrial mammals or birds that can be seen on images. Nevertheless, the ability of UASs to detect non-conspicuous species, such as small birds below the forest canopy, remains an open question. This issue can be solved with bioacoustics for acoustically active species such as bats and birds. In this context, UASs represent an interesting solution that could be deployed on a larger scale, at lower risk for the operator, and over hard-to-reach locations, such as forest canopies or complex topographies, when compared with traditional protocols (fixed location recorders placed or handled by human operators). In this context, this study proposes a methodological framework to assess the potential of UASs in bioacoustic surveys for birds and bats, using low-cost audible and ultrasound recorders mounted on a low-cost quadcopter UAS (DJI Phantom 3 Pro). The proposed methodological workflow can be straightforwardly replicated in other contexts to test the impact of other UAS bioacoustic recording platforms in relation to the targeted species and the specific UAS design. This protocol allows one to evaluate the sensitivity of UAS approaches through the estimate of the effective detection radius for the different species investigated at several flight heights. The results of this study suggest a strong potential for the bioacoustic monitoring of birds but are more contrasted for bat recordings, mainly due to quadcopter noise (i.e., electronic speed controller (ESC) noise) but also, in a certain manner, to the experimental design (use of a directional speaker with limited call intensity). Technical developments, such as the use of a winch to safely extent the distance between the UAS and the recorder during UAS sound recordings or the development of an innovative platform, such as a plane–blimp hybrid UAS, should make it possible to solve these issues.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 49
Author(s):  
Hélida Gomes de Oliveira Barud ◽  
Robson Rosa da Silva ◽  
Marco Antonio Costa Borges ◽  
Guillermo Raul Castro ◽  
Sidney José Lima Ribeiro ◽  
...  

Bacterial cellulose (BC) is a natural polymer that has fascinating attributes, such as biocompatibility, low cost, and ease of processing, being considered a very interesting biomaterial due to its options for moldability and combination. Thus, BC-based compounds (for example, BC/collagen, BC/gelatin, BC/fibroin, BC/chitosan, etc.) have improved properties and/or functionality, allowing for various biomedical applications, such as artificial blood vessels and microvessels, artificial skin, and wounds dressing among others. Despite the wide applicability in biomedicine and tissue engineering, there is a lack of updated scientific reports on applications related to dentistry, since BC has great potential for this. It has been used mainly in the regeneration of periodontal tissue, surgical dressings, intraoral wounds, and also in the regeneration of pulp tissue. This review describes the properties and advantages of some BC studies focused on dental and oral applications, including the design of implants, scaffolds, and wound-dressing materials, as well as carriers for drug delivery in dentistry. Aligned to the current trends and biotechnology evolutions, BC-based nanocomposites offer a great field to be explored and other novel features can be expected in relation to oral and bone tissue repair in the near future.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2846
Author(s):  
Seung Hyuk Im ◽  
Dam Hyeok Im ◽  
Su Jeong Park ◽  
Justin Jihong Chung ◽  
Youngmee Jung ◽  
...  

Polylactide (PLA) is among the most common biodegradable polymers, with applications in various fields, such as renewable and biomedical industries. PLA features poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) enantiomers, which form stereocomplex crystals through racemic blending. PLA emerged as a promising material owing to its sustainable, eco-friendly, and fully biodegradable properties. Nevertheless, PLA still has a low applicability for drug delivery as a carrier and scaffold. Stereocomplex PLA (sc-PLA) exhibits substantially improved mechanical and physical strength compared to the homopolymer, overcoming these limitations. Recently, numerous studies have reported the use of sc-PLA as a drug carrier through encapsulation of various drugs, proteins, and secondary molecules by various processes including micelle formation, self-assembly, emulsion, and inkjet printing. However, concerns such as low loading capacity, weak stability of hydrophilic contents, and non-sustainable release behavior remain. This review focuses on various strategies to overcome the current challenges of sc-PLA in drug delivery systems and biomedical applications in three critical fields, namely anti-cancer therapy, tissue engineering, and anti-microbial activity. Furthermore, the excellent potential of sc-PLA as a next-generation polymeric material is discussed.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 242 ◽  
Author(s):  
Monica Terracciano ◽  
Luca De Stefano ◽  
Ilaria Rea

Diatom microalgae are the most outstanding natural source of porous silica. The diatom cell is enclosed in a three-dimensional (3-D) ordered nanopatterned silica cell wall, called frustule. The unique properties of the diatom frustule, including high specific surface area, thermal stability, biocompatibility, and tailorable surface chemistry, make diatoms really promising for biomedical applications. Moreover, they are easy to cultivate in an artificial environment and there is a large availability of diatom frustules as fossil material (diatomite) in several areas of the world. For all these reasons, diatoms are an intriguing alternative to synthetic materials for the development of low-cost drug delivery systems. This review article focuses on the possible use of diatom-derived silica as drug carrier systems. The functionalization strategies of diatom micro/nanoparticles for improving their biophysical properties, such as cellular internalization and drug loading/release kinetics, are described. In addition, the realization of hybrid diatom-based devices with advanced properties for theranostics and targeted or augmented drug delivery applications is also discussed.


Author(s):  
Stewart Smith ◽  
Hancong Wu ◽  
Jiabin Jia

This poster reports the design, implementation and testing of a portable and inexpensive bio-impedance measurement system intended for electrical impedance tomography (EIT) in cell cultures. The system is based on the AD5933 impedance analyser integrated circuit with additional circuitry to enable four-terminal measurement. Initial results of impedance measurements are reported along with an EIT image reconstructed using the open source EIDORS package.


2021 ◽  
Author(s):  
Rahat Nawaz ◽  
Sayed Tayyab Raza Naqvi ◽  
Batool Fatima ◽  
Nazia Zulfiqar ◽  
Muhammad Umer Farooq ◽  
...  

Abstract Nonwoven cotton fabric has been fabricated and designed for antibacterial applications using low cost and ecofriendly precursors. The treatment of fabric with alkali leads to formation of active sites. The surfaces were dip coated with silver nanaoparticles and chitosan. The surface was chlorinated in next step to transform amide (N-H) groups in chitosan into N-halamine (N-Cl). The modified and unmodified surfaces of the nonwoven cotton fabric have been characterized by FTIR, SEM, and XRD. The active chlorine loading is measured with iodine/ sodium thiosulphate. The antimicrobial activity and cell toxicity assay were carried out with and without modifications of nonwoven cotton fabric. The antimicrobial efficacies of loaded fabric were evaluated against four bacterial species (Micrococcus lutes, Staphylococcus aurea, Enterobacter aerogenes, and E.coli). It was found that modified fabric exhibited superior efficiency against gram-positive and gram-negative bacterial strains as compared to their bulk counterparts upon exposure without destroying and affecting fabric nature. The overall process is economical for commercial purposes. The modified fabric can be used for antimicrobial, health, and food packaging industries, and in other biomedical applications.


2018 ◽  
Vol 10 (38) ◽  
pp. 4648-4654 ◽  
Author(s):  
Tae Joon Kwak ◽  
Wookkun Kwon ◽  
Jiang Yang ◽  
Sang Woo Lee ◽  
Woo-Jin Chang

Paper fluidics has recently offered an approach to precisely guide liquid flow in analytical devices with a low-cost regime.


Sign in / Sign up

Export Citation Format

Share Document