scholarly journals Identifying Conserved Generic Aspergillus spp. Co-Expressed Gene Modules Associated with Germination Using Cross-Platform and Cross-Species Transcriptomics

2021 ◽  
Vol 7 (4) ◽  
pp. 270
Author(s):  
Tim J. H. Baltussen ◽  
Jordy P. M. Coolen ◽  
Paul E. Verweij ◽  
Jan Dijksterhuis ◽  
Willem J. G. Melchers

Aspergillus spp. is an opportunistic human pathogen that may cause a spectrum of pulmonary diseases. In order to establish infection, inhaled conidia must germinate, whereby they break dormancy, start to swell, and initiate a highly polarized growth process. To identify critical biological processes during germination, we performed a cross-platform, cross-species comparative analysis of germinating A. fumigatus and A. niger conidia using transcriptional data from published RNA-Seq and Affymetrix studies. A consensus co-expression network analysis identified four gene modules associated with stages of germination. These modules showed numerous shared biological processes between A. niger and A. fumigatus during conidial germination. Specifically, the turquoise module was enriched with secondary metabolism, the black module was highly enriched with protein synthesis, the darkgreen module was enriched with protein fate, and the blue module was highly enriched with polarized growth. More specifically, enriched functional categories identified in the blue module were vesicle formation, vesicular transport, tubulin dependent transport, actin-dependent transport, exocytosis, and endocytosis. Genes important for these biological processes showed similar expression patterns in A. fumigatus and A. niger, therefore, they could be potential antifungal targets. Through cross-platform, cross-species comparative analysis, we were able to identify biologically meaningful modules shared by A. fumigatus and A. niger, which underscores the potential of this approach.

Author(s):  
Rianne R. Campbell ◽  
Siwei Chen ◽  
Joy H. Beardwood ◽  
Alberto J. López ◽  
Lilyana V. Pham ◽  
...  

AbstractDuring the initial stages of drug use, cocaine-induced neuroadaptations within the ventral tegmental area (VTA) are critical for drug-associated cue learning and drug reinforcement processes. These neuroadaptations occur, in part, from alterations to the transcriptome. Although cocaine-induced transcriptional mechanisms within the VTA have been examined, various regimens and paradigms have been employed to examine candidate target genes. In order to identify key genes and biological processes regulating cocaine-induced processes, we employed genome-wide RNA-sequencing to analyze transcriptional profiles within the VTA from male mice that underwent one of four commonly used paradigms: acute home cage injections of cocaine, chronic home cage injections of cocaine, cocaine-conditioning, or intravenous-self administration of cocaine. We found that cocaine alters distinct sets of VTA genes within each exposure paradigm. Using behavioral measures from cocaine self-administering mice, we also found several genes whose expression patterns corelate with cocaine intake. In addition to overall gene expression levels, we identified several predicted upstream regulators of cocaine-induced transcription shared across all paradigms. Although distinct gene sets were altered across cocaine exposure paradigms, we found, from Gene Ontology (GO) term analysis, that biological processes important for energy regulation and synaptic plasticity were affected across all cocaine paradigms. Coexpression analysis also identified gene networks that are altered by cocaine. These data indicate that cocaine alters networks enriched with glial cell markers of the VTA that are involved in gene regulation and synaptic processes. Our analyses demonstrate that transcriptional changes within the VTA depend on the route, dose and context of cocaine exposure, and highlight several biological processes affected by cocaine. Overall, these findings provide a unique resource of gene expression data for future studies examining novel cocaine gene targets that regulate drug-associated behaviors.


Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 34
Author(s):  
Taesic Lee ◽  
Hyunju Lee

Alzheimer’s disease (AD) and diabetes mellitus (DM) are known to have a shared molecular mechanism. We aimed to identify shared blood transcriptomic signatures between AD and DM. Blood expression datasets for each disease were combined and a co-expression network was used to construct modules consisting of genes with similar expression patterns. For each module, a gene regulatory network based on gene expression and protein-protein interactions was established to identify hub genes. We selected one module, where COPS4, PSMA6, GTF2B, GTF2F2, and SSB were identified as dysregulated transcription factors that were common between AD and DM. These five genes were also differentially co-expressed in disease-related tissues, such as the brain in AD and the pancreas in DM. Our study identified gene modules that were dysregulated in both AD and DM blood samples, which may contribute to reveal common pathophysiology between two diseases.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kai Zhao ◽  
Song Chen ◽  
Wenjing Yao ◽  
Zihan Cheng ◽  
Boru Zhou ◽  
...  

Abstract Background The bZIP gene family, which is widely present in plants, participates in varied biological processes including growth and development and stress responses. How do the genes regulate such biological processes? Systems biology is powerful for mechanistic understanding of gene functions. However, such studies have not yet been reported in poplar. Results In this study, we identified 86 poplar bZIP transcription factors and described their conserved domains. According to the results of phylogenetic tree, we divided these members into 12 groups with specific gene structures and motif compositions. The corresponding genes that harbor a large number of segmental duplication events are unevenly distributed on the 17 poplar chromosomes. In addition, we further examined collinearity between these genes and the related genes from six other species. Evidence from transcriptomic data indicated that the bZIP genes in poplar displayed different expression patterns in roots, stems, and leaves. Furthermore, we identified 45 bZIP genes that respond to salt stress in the three tissues. We performed co-expression analysis on the representative genes, followed by gene set enrichment analysis. The results demonstrated that tissue differentially expressed genes, especially the co-expressing genes, are mainly involved in secondary metabolic and secondary metabolite biosynthetic processes. However, salt stress responsive genes and their co-expressing genes mainly participate in the regulation of metal ion transport, and methionine biosynthetic. Conclusions Using comparative genomics and systems biology approaches, we, for the first time, systematically explore the structures and functions of the bZIP gene family in poplar. It appears that the bZIP gene family plays significant roles in regulation of poplar development and growth and salt stress responses through differential gene networks or biological processes. These findings provide the foundation for genetic breeding by engineering target regulators and corresponding gene networks into poplar lines.


2021 ◽  
Author(s):  
Milton Pividori ◽  
Sumei Lu ◽  
Binglan Li ◽  
Chun Su ◽  
Matthew E. Johnson ◽  
...  

Understanding how dysregulated transcriptional processes result in tissue-specific pathology requires a mechanistic interpretation of expression regulation across different cell types. It has been shown that this insight is key for the development of new therapies. These mechanisms can be identified with transcriptome-wide association studies (TWAS), which have represented an important step forward to test the mediating role of gene expression in GWAS associations. However, due to pervasive eQTL sharing across tissues, TWAS has not been successful in identifying causal tissues, and other methods generally do not take advantage of the large amounts of RNA-seq data publicly available. Here we introduce a polygenic approach that leverages gene modules (genes with similar co-expression patterns) to project both gene-trait associations and pharmacological perturbation data into a common latent representation for a joint analysis. We observed that diseases were significantly associated with gene modules expressed in relevant cell types, such as hypothyroidism with T cells and thyroid, hypertension and lipids with adipose tissue, and coronary artery disease with cardiomyocytes. Our approach was more accurate in predicting known drug-disease pairs and revealed stable trait clusters, including a complex branch involving lipids with cardiovascular, autoimmune, and neuropsychiatric disorders. Furthermore, using a CRISPR-screen, we show that genes involved in lipid regulation exhibit more consistent trait associations through gene modules than individual genes. Our results suggest that a gene module perspective can contextualize genetic associations and prioritize alternative treatment targets when GWAS hits are not druggable.


2018 ◽  
Vol 45 (5) ◽  
pp. 528 ◽  
Author(s):  
Qing Yang ◽  
Qiuju Chen ◽  
Yuandi Zhu ◽  
Tianzhong Li

As a classic plant-specific transcription factor family – the Dof domain proteins – are involved in a variety of biological processes in organisms ranging from unicellular Chlamydomonas to higher plants. However, there are limited reports of MdDof (Malus domestica Borkh. DNA-binding One Zinc Finger) domain proteins in fruit trees, especially in apple. In this study we identified 54 putative Dof transcription factors in the apple genome. We analysed the gene structures, protein motifs, and chromosome locations of each of the MdDof genes. Next, we characterised all 54 MdDofs their expression patterns under different abiotic and biotic stress conditions. It was found that MdDof6,26 not only played an important role in the biotic/abiotic stress but may also be involved in many molecular functions. Further, both in flower development and pollen tube growth it was found that the relative expression of MdDof24 increased rapidly, also with gene ontology analysis it was indicated that MdDof24 was involved in the chemical reaction and flower development pathways. Taken together, our results provide useful clues as to the function of MdDof genes in apple and serve as a reference for studies of Dof zinc finger genes in other plants.


Author(s):  
Wei Lai ◽  
Zhaoyang Hu ◽  
Chuxia Zhu ◽  
Yingui Yang ◽  
Shiqiang Liu ◽  
...  

Protein ubiquitination is one of the most common modifications that can degrade or modify proteins in eukaryotic cells. The E2 ubiquitin-conjugating enzymes (UBCs) are involved in multiple biological processes of eukaryotes and their response to adverse stresses. Genome-wide survey of the UBC gene family has been performed in many plant species but not in cucumber (Cucumis sativus). In this study, a total of 38 UBC family genes (designated as CsUBC1–CsUBC38) were identified in cucumber. The phylogenetic analysis of UBC proteins from cucumber, Arabidopsis and maize indicated that these proteins could be divided into 15 groups. Most of the phylogenetically related CsUBC members had similar conserved motif patterns and gene structures. The CsUBC genes were unevenly distributed on seven chromosomes, and gene duplication analysis indicated that segmental duplication has played a significant role in the expansion of the cucumber UBC gene family. Promoter analysis of these genes resulted in the identification of many hormone-, stress- and development-related cis-elements. The CsUBC genes exhibited differential expression patterns in different tissues and developmental stages of fruit ripening. In addition, a total of 14 CsUBC genes were differentially expressed upon downy mildew (DM) infection compared with the control. Our results lay the foundation for further clarification of the roles of the CsUBC genes in the future.


Web 2.0 applications are becoming ubiquitous applications (i.e., applications that can be accessed by anyone, anywhere, anytime, using any device). A key element of these ubiquitous applications is mobile devices. In fact, the involvement of mobile devices such as smartphones and tablet computers in the development of Web 2.0 applications has resulted in a new kind of Rich Internet Application (RIA) that can run on a variety of devices starting from the same code base, and it is known as multi-device RIA. The term multi-device RIA embraces not only mobile applications but also other kinds of out-of-browser applications such as cross-platform desktop applications as well as the traditional cross-browser Web applications. This chapter formalizes the concept of multi-device RIA, and then it presents an overview of the capabilities of several multi-device development frameworks. This review is finally summarized in a comparative analysis.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Abbas Jariani ◽  
Christopher Warth ◽  
Koen Deforche ◽  
Pieter Libin ◽  
Alexei J Drummond ◽  
...  

Abstract Simulations are widely used to provide expectations and predictive distributions under known conditions against which to compare empirical data. Such simulations are also invaluable for testing and comparing the behaviour and power of inference methods. We describe SANTA-SIM, a software package to simulate the evolution of a population of gene sequences forwards through time. It models the underlying biological processes as discrete components: replication, recombination, point mutations, insertion–deletions, and selection under various fitness models and population size dynamics. The software is designed to be intuitive to work with for a wide range of users and executable in a cross-platform manner.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Fei Long ◽  
Jia-Hang Su ◽  
Bin Liang ◽  
Li-Li Su ◽  
Shu-Juan Jiang

Lung cancer consists of two main subtypes: small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC) that are classified according to their physiological phenotypes. In this study, we have developed a network-based approach to identify molecular biomarkers that can distinguish SCLC from NSCLC. By identifying positive and negative coexpression gene pairs in normal lung tissues, SCLC, or NSCLC samples and using functional association information from the STRING network, we first construct a lung cancer-specific gene association network. From the network, we obtain gene modules in which genes are highly functionally associated with each other and are either positively or negatively coexpressed in the three conditions. Then, we identify gene modules that not only are differentially expressed between cancer and normal samples, but also show distinctive expression patterns between SCLC and NSCLC. Finally, we select genes inside those modules with discriminating coexpression patterns between the two lung cancer subtypes and predict them as candidate biomarkers that are of diagnostic use.


Sign in / Sign up

Export Citation Format

Share Document