scholarly journals Magnolol Induces the Extrinsic/Intrinsic Apoptosis Pathways and Inhibits STAT3 Signaling-Mediated Invasion of Glioblastoma Cells

Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1399
Author(s):  
Po-Fu Yueh ◽  
Yuan-Hao Lee ◽  
Chun-Yu Fu ◽  
Chun-Bin Tung ◽  
Fei-Ting Hsu ◽  
...  

Glioblastoma multiforme (GBM) is the most common form of malignant brain tumor, with poor prognosis; the efficacy of current standard therapy for GBM remains unsatisfactory. Magnolol, an herbal medicine from Magnolia officinalis, exhibited anticancer properties against many types of cancers. However, whether magnolol suppresses GBM progression as well as its underlying mechanism awaits further investigation. In this study, we used the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay, apoptosis marker analysis, transwell invasion and wound-healing assays to identify the effects of magnolol on GBM cells. We also validated the potential targets of magnolol on GBM with the GEPIA (Gene Expression Profiling Interactive Analysis) and Western blotting assay. Magnolol was found to trigger cytotoxicity and activate extrinsic/intrinsic apoptosis pathways in GBM cells. Both caspase-8 and caspase-9 were activated by magnolol. In addition, GEPIA data indicated the PKCδ (Protein kinase C delta)/STAT3 (Signal transducer and activator of transcription 3) signaling pathway as a potential target of GBM. Magnolol effectively suppressed the phosphorylation and nuclear translocation of STAT3 in GBM cells. Meanwhile, tumor invasion and migration ability and the associated genes, including MMP-9 (Matrix metalloproteinase-9) and uPA (Urokinase-type plasminogen activator), were all diminished by treatment with magnolol. Taken together, our results suggest that magnolol-induced anti-GBM effect may be associated with the inactivation of PKCδ/STAT3 signaling transduction.

Author(s):  
Yuanyuan Wang ◽  
Shanqi Guo ◽  
Yingjie Jia ◽  
Xiaoyu Yu ◽  
Ruiyu Mou ◽  
...  

ABSTRACT Prostate cancer (PCa) is one of the important factors of cancer deaths especially in the western countries. Hispidulin (4′,5,7-trihydroxy-6-methoxyflavone) is a phenolic flavonoid compound proved to possess anticancer properties, but its effects on PCa are left to be released. The aims of this study were to investigate the effects and the relative mechanisms of Hispidulin on PCa development. Hispidulin administration inhibited proliferation, invasion, and migration, while accelerated apoptosis in Du145 and VCaP cells, which was accompanied by PPARγ activation and autophagy enhancement. The beneficial effects of Hispidulin could be diminished by PPARγ inhibition. Besides, Hispidulin administration suppressed PCa tumorigenicity in Xenograft models, indicating the anticancer properties in vivo. Therefore, our work revealed that the anticancer properties of Hispidulin might be conferred by its activation on PPARγ and autophagy.


2021 ◽  
Vol 20 ◽  
pp. 153303382110330
Author(s):  
Chuangui Chen ◽  
Zhao Ma ◽  
Hongjing Jiang

Epithelial-mesenchymal transition (EMT) is a key step in tumor invasion and distant metastasis. Abundant evidence has documented that exosomes can mediate EMT of tumor cells and endow them with the ability of invasion and migration. However, there are few studies focusing on whether EMT can reverse the secretion of exosomes. In this study, 2 esophageal cancer cells (FLO-1 and SK-GT-4) were selected to compare the migration ability and EMT activation, and to further analyze the secretion ability of exosomes of the 2 cell lines. According to the results, inhibited activation of EMT in FLO-1 cells with relatively high migration ability could effectively reduce the secretion of exosomes. Besides, in SK-GT-4 cells, EMT activation induced by TGF-β could promote the secretion of exosomes. FLO-1 cell derived exosomes exhibited a paracrine effect of promoting the migration of SK-GT-4 cells, and the use of EMT inhibitors could weaken this ability. Furthermore, inhibition of EMT could change the relative content of some miRNAs in exosomes, with a particularly significant downregulation in the expression of miR-196-5p, miR-21-5p and miR-194-5p. Significantly, artificial transfection of the 3 miRNAs into exosomes by electroporation resulted in the recovery of migration-promoting effect of exosomes. Subsequent experiments further revealed that the effect of EMT on these miRNAs could be explained by the intracellular transcription level or the specific sorting mechanism of exosomes. To sum up, our study undoubtedly reveals that EMT has a regulatory effect on exosomes in the quantity and contents in esophageal cancer cells. Significantly, findings in our study provide experimental evidence for the interaction of EMT with the secretion and sorting pathway of exosomes, and also give a new direction for the further study of tumor metastasis.


2017 ◽  
Vol 44 (6) ◽  
pp. 2357-2367 ◽  
Author(s):  
Yiquan Wang ◽  
Chencheng Dai ◽  
Cheng Zhou ◽  
Wenqu Li ◽  
Yujia Qian ◽  
...  

Background/Aims: Benzotriazole (BTR) and its derivatives, such as intermediates and UV stabilizers, are important man-made organic chemicals found in everyday life that have been recently identified as environmental toxins and a threat to female reproductive health. Previous studies have shown that BTR could act as a carcinogen by mimicking estrogen. Environmental estrogen mimics could promote the initiation and development of female cancers, such as endometrial carcinoma, a type of estrogenic-sensitive malignancy. However, there is little information on the relationship between BTR and endometrial carcinoma. In this study, we aimed to demonstrate the biological function of BTR in endometrial carcinoma and explored the underlying mechanism. Methods: The CCK-8 assay was performed to detect cell viability; transwell-filter assay was used to assess cell invasion; gene microarray analysis was employed to determine gene expression patterns in response to BTR treatment; western blotting and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were carried out to detect the expression levels of BTR-related genes. Results: Our data showed that BTR could induce the invasion and migration of endometrial carcinoma cells (Ishikawa and HEC-1-B). In addition, BTR increased the expression level of CTBP1, which could enhance the epithelial-mesenchymal transition (EMT) in cancer cells. Moreover, CTBP1 silencing reversed the effect of BTR on EMT progression in endometrial carcinoma cells. Conclusion: This study indicates that BTR could act as a carcinogen to promote the development of endometrial carcinoma mainly through CTBP1-mediated EMT, which deserves more attention.


2020 ◽  
Vol 168 (5) ◽  
pp. 547-555
Author(s):  
Jin Dou ◽  
Daoyuan Tu ◽  
Haijian Zhao ◽  
Xiaoyu Zhang

Abstract MiR-301a is as an oncogene involved in the regulation of gastric cancer (GC) progression, but the underlying mechanism is unclear. This study was to explore the lncRNA PCAT18/miR-301a/TP53INP1 axis in regulating the GC cell proliferation and metastasis. In the present study, GC tissues and cell lines were collected for the detection of PCAT18 expression. Herein, we found that PCAT18 is significantly decreases in human GC tissues and five GC cell lines. Overexpression of PCAT18 inhibits cell viability, invasion and migration of GC cells and tumour growth of GC xenograft tumours. PCAT18 negatively regulates the expression level of miR-301a. The interaction between PCAT18 and miR-301a is confirmed by RIP and RNA pull down. MiR-301a mimic increases cell viability and promotes cell migration and invasion and reverses the inhibitory action of PCAT18. TP53INP1 expression is negatively regulated by miR-301a and TP53INP1/miR-301a is involved in GC viability, migration and invasion. The promoting of PCAT18 on TP53INP1 expression is abolished by miR-301a overexpression. In conclusion, lncRNA PCAT18 acts as a tumour suppressor for GC and lncRNA PCAT18, miR-301a and TP53INP1 comprise a signal axis in regulating GC cell proliferation, migration and invasion.


2017 ◽  
Vol 41 (3) ◽  
pp. 1179-1188 ◽  
Author(s):  
Anquan Shang ◽  
Man Yang ◽  
Fujun Shen ◽  
Jun Wang ◽  
Jun Wei ◽  
...  

Background: Bladder cancer is of compelling morbidity and mortality due to its high recurrence rate. Little development has been made in the last decades in the therapy methods. Thus, the mechanism of its growth and invasiveness involving novel molecular targets are needed. Objective: Our research objective is to confirm the hypothesis that miR-1-3p suppresses the proliferation, invasion and migration of bladder cancer cells. Methods: The expression levels of miR-1-3p and SFRP1 were evaluated using RT-qPCR in bladder cancer tissues and cells as well as in normal tissues and cells. J82 cell lines were selected as experiment subjects due to their low expression levels of miR-1-3p. Plasmids carrying miR-1-3p mimics, miR-1-3p inhibitors and SFRP1 were transfected into the J82 cell lines. Subsequently, the protein expression of SFRP1 was detected using Western Blot analysis, and cell proliferation, apoptosis, invasion and migration ability was measured using MTT, the flow cytometry, the Transwell test and wound healing assays, respectively Results: Bladder cancer tissues and cells exhibited significant decrease in the expression of miR-1-3p and SFRP1 compared to normal tissues and cells, and human bladder cancer cell line J82 exhibited the most significant decrease in these expressions (P < 0.05). MiR-1-3p up-regulates SFRP1 expression in bladder cancer cells, and the over-expression of miR-1-3p can suppress the proliferation, invasion and migration ability of bladder cancer cells. This mechanism is similar to the effect of SFRP1 over-expression on bladder cancer cells. Conclusion: MiR-1-3p suppresses the proliferation, invasion and migration of bladder cancer cells by up-regulating SFRP1 expression.


2018 ◽  
Vol 45 (2) ◽  
pp. 744-760 ◽  
Author(s):  
Sha She ◽  
Min Yang ◽  
Huaidong Hu ◽  
Peng Hu ◽  
Yixuan Yang ◽  
...  

Background/Aims: Hepatitis B virus (HBV) infection is a major cause of cirrhosis and hepatocellular carcinoma. Therefore, we aimed to obtain further information on HBV pathogenesis, and to search for novel putative molecules for anti-HBV therapy. Methods: We utilized Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) to identify the secretory proteins that are differentially expressed in the HBV DNA-transfected HepG2.2.15 cell line and its parental HepG2 cell line. Immunohistochemistry (IHC) was employed to assess the clinical relevance of the observations. Small interfering (si)RNA-based silencing transfection methods were carried out to study the function of ENPP2. Results: Totally, 133 unique proteins were identified as differentially expressed in HepG2.2.15 cell line compared with HepG2 cell line. Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 precursor (ENPP2) is one of the most significantly up-regulated secretory proteins associated with HBV replication. This differential expression of ENPP2 was further validated by real-time quantitative RT-PCR, Western Blot and immunohistochemical analysis. To study the function of ENPP2, we knockdown ENPP2 expression in HepG2.2.15 cell line by RNA interference. ENPP2 silencing increased HBV replication approximately 2.3-fold by enhancing, via the type I IFN signaling pathway, HBV cccDNA (covalently closed circular DNA) translation into viral RNA. Moreover, attenuation of ENPP2 expression inhibited both the invasion and migration ability of hepatoma cells in vitro via interacting with the molecules in the tumor microenvironment. Conclusion: Our study demonstrates that ENPP2 may be a novel anti-HBV target and indicate that suppression of its expression may inhibit the invasion and migration ability of hepatoma cells.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1363 ◽  
Author(s):  
Yunna Lee ◽  
Su Jin Kim ◽  
Jieun Choo ◽  
Gwangbeom Heo ◽  
Jin-Wook Yoo ◽  
...  

MicroRNAs (miRNAs) have emerged as key players in tumor angiogenesis. Interleukin-17C (IL-17C) was identified to promote colorectal cancer (CRC) progression. Therefore, we aimed to investigate the effect of IL-17C on tumor angiogenesis, the involvement of miR-23a-3p in IL-17C signaling, and the direct target gene of miR-23a-3p in CRC. In vitro and ex vivo angiogenesis, a mouse xenograft experiment, and immunostaining were performed to test the effect of IL-17C on tumor angiogenesis. ELISA, quantitative real time PCR, and gene silencing were used to uncover the underlying mechanism. IL-17C induced angiogenesis of intestinal endothelial cells, subsequently enhancing cell invasion and migration of DLD-1 cells. IL-17C-stimulated DLD-1 cells produced vascular endothelial growth factor (VEGF) to enhance angiogenesis. Moreover, IL-17C markedly accelerated xenograft tumor growth, which was manifested by substantially reduced tumor growth when treated with the VEGF receptor 2 inhibitor Ki8751. Accordingly, Ki8751 suppressed the expression of IL-17C-stimulated PECAM and VE-cadherin in xenografts. Furthermore, IL-17C activated STAT3 to increase the expression of miR-23a-3p that suppressed semaphorin 6D (SEMA6D) expression, thereby permitting VEGF production. Taken together, our study demonstrates that IL-17C promotes tumor angiogenesis through VEGF production via a STAT3/miR-23a-3p/SEMA6D axis, suggesting its potential as a novel target for anti-CRC therapy.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Liangchen Qu ◽  
Pan Lin ◽  
Minjie Lin ◽  
Shumin Ye ◽  
Percy David Papa Akuetteh ◽  
...  

Glioma is the most common brain tumor and is characterized by high mortality rates, high recurrence rates, and short survival time. Migration and invasion are the basic features of gliomas. Thus, inhibition of migration and invasion may be beneficial for the treatment of patients with glioma. Due to its antitumor activity and chemical reactivity, fraxetin has attracted extensive interest and has been proven to be an effective antitumor agent in various cancer types. However, currently, the potential effects of fraxetin on glioma have not been investigated. Here, we demonstrate that fraxetin can inhibit the proliferation, invasion, and migration of glioma and induce apoptosis of glioma cells in vitro and in vivo. Therefore, these findings establish fraxetin as a drug candidate for glioma treatment. Furthermore, fraxetin was able to effectively inhibit the JAK2/STAT3 signaling in glioma. In summary, our results show that fraxetin inhibits proliferation, invasion, and migration of glioma by inhibiting JAK2/STAT3 signaling and inducing apoptosis of glioma cells. The present study provides a solid basis for the development of new glioma therapies.


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Mingli Suo ◽  
Yanfei Sun ◽  
Hailan Yang ◽  
Jing Ji ◽  
Yinfang He ◽  
...  

Abstract Preeclampsia (PE), a common obstetrical disorder, is characterized by impaired migration and invasion abilities of trophoblastic cells. MicroRNA-183-5p (miR-183) was reported to regulate cell migration and invasion in various types of human cancers; however, its role in the pathogenesis of PE remains elusive. Herein, we investigated the role of miR-183 in HTR-8/SVneo trophoblast cells invasion and migration and explored the underlying mechanism. Our results showed that miR-183 was significantly up-regulated in placental tissues from pregnant women compared with that in normal pregnant women. Overexpression of miR-183 inhibited proliferation, migration and invasion, as well as induced apoptosis in HTR-8/SVneo cells. Otherwise, down-regulation of miR-183 achieved the opposite effects. Bioinformatics prediction and luciferase reporter assay confirmed that matrix metalloproteinase-9 (MMP-9) is a target of miR-183. In addition, MMP-9 expression was significantly down-regulated, and inversely correlated with the miR-183 level in placental tissues from pregnant women with severe PE. Down-regulation of MMP-9 suppressed the trophoblast cell invasion and migration, whereas overexpression of MMP-9 promoted cell invasion and migration in HTR-8/SVneo cells. More importantly, up-regulation of MMP-9 reversed the inhibitory effects of miR-183 on cell invasion and migration in trophoblast cells. Collectively, our findings suggested that miR-183 may play critical roles in the pathogenesis of PE and serve as a potential biomarker for severe PE.


Sign in / Sign up

Export Citation Format

Share Document