scholarly journals Improvement of Asphalt-Aggregate Adhesion Using Plant Ash Byproduct

Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 605 ◽  
Author(s):  
Zhuangzhuang Liu ◽  
Xiaonan Huang ◽  
Aimin Sha ◽  
Hao Wang ◽  
Jiaqi Chen ◽  
...  

The adhesion bonding between asphalt and aggregate significantly influences field performance and durability of asphalt pavement. Adhesion promoters are typically used to improve asphalt-aggregate bonding and minimize moisture-related pavement damage, such as cracking and raveling. This study evaluated the effectiveness of plant ash byproduct as adhesion promoter to improve asphalt-aggregate adhesion performance. Three commonly used aggregate types (granite, basic rock, and limestone) and two asphalt binder types were used in laboratory testing. A modified stripping test method was developed to evaluate test results with image analysis and measurement of asphalt film thickness. The contact angle test and scanning electron microscopy (SEM) with energy disperse spectroscopy (EDS) were conducted. Test results showed that plant ash lixivium significantly improved asphalt-aggregate adhesion. Among three aggregate types, granite yielded the worst asphalt-aggregate adhesion for both control and treated specimens. The effectiveness of adhesion promotion varied depending on the type of asphalt or aggregate and temperature. The SEM/EDS observations showed that the mesh-like crystalline was formed at the interface between asphalt binder and aggregate in the treated specimen, which was believed to enhance the interfacial bonding and prevent asphalt film peeling off from aggregate.

Author(s):  
Prithvi S. Kandhal ◽  
Rajib B. Mallick ◽  
Mike Huner

Bulk specific gravity of the fine aggregate is used in hot-mix asphalt volumetric-mix design (including Superpave) to determine the amount of asphalt binder absorbed by the aggregate and the percentage of voids in the mineral aggregate. The current test method (AASHTO T84) uses a cone method to establish the saturated surface dry (SSD) condition of the sample, which is necessary to conduct the test. This method does not work satisfactorily for fine aggregates that are very angular and have rough surface texture and, therefore, do not slump readily when in SSD condition. A research project was undertaken to develop automated equipment and a method of establishing the SSD condition of the fine aggregate. The wet sample of the fine aggregate is placed in a rotating drum and subjected to a steady flow of warm air. The temperature gradient of the incoming and outgoing air and the relative humidity of the outgoing air are monitored to establish the SSD condition. Two prototype devices were constructed. The test results obtained with the second prototype device are encouraging and are reported. Further improvements to be made to the second prototype device to improve the repeatability and reproducibility of the test have been identified.


1998 ◽  
Vol 518 ◽  
Author(s):  
S. S Das ◽  
C. G.Khan Malek

AbstractThe formation of high aspect ratio Micro-Electro-Mechanical Structures (HI-MEMS) requires good adhesion of the thick microstructures to the substrate. The interfacial bond strength between PMMA and various metal substrates (Ti, Cu, Au, and Ni), in the preliminary stages of the LIGA process, was evaluated by shear stress measurement. Adhesion promotion processes have been investigated such as texturing of the surface of Ti and Cu substrates by chemical oxidation or thermal processing of the PMMA sheet, and use of a positive resist as an interfacial adhesion promoter. Several fold increases in bond strength were obtained, the largest increase associated with a combination of substrate roughening, thermal treatment and use of adhesion promoters.


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 390
Author(s):  
Fernando Luiz Lavoie ◽  
Marcelo Kobelnik ◽  
Clever Aparecido Valentin ◽  
Érica Fernanda da Silva Tirelli ◽  
Maria de Lurdes Lopes ◽  
...  

High-density polyethylene (HDPE) geomembranes are polymeric geosynthetic materials usually applied as a liner in environmental facilities due to their good mechanical properties, good welding conditions, and excellent chemical resistance. A geomembrane’s field performance is affected by different conditions and exposures, including ultraviolet radiation, thermal and oxidative exposure, and chemical contact. This article presents an experimental study with a 1.0 mm-thick HDPE virgin geomembrane exposed by the Xenon arc weatherometer for 2160 h and the ultraviolet fluorescent weatherometer for 8760 h to understand the geomembrane’s behavior under ultraviolet exposure. The evaluation was performed using the melt flow index (MFI) test, oxidative-induction time (OIT) tests, tensile test, differential scanning calorimetry (DSC) analysis, and Fourier transform infrared spectroscopy (FTIR) analysis. The sample exposed in the Xenon arc equipment showed a tendency to increase the MFI values during the exposure time. This upward trend may indicate morphological changes in the polymer. The tensile behavior analysis showed a tendency of the sample to lose ductility, without showing brittle behavior. The samples’ OIT test results under both device exposures showed faster antioxidant depletion for the standard OIT test than the high-pressure OIT test. The DSC and FTIR analyses did not demonstrate the polymer’s changes.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3073
Author(s):  
Abbas Mukhtar Adnan ◽  
Chaofeng Lü ◽  
Xue Luo ◽  
Jinchang Wang

This study has investigated the impact of graphene oxide (GO) in enhancing the performance properties of an asphalt binder. The control asphalt binder (60/70 PEN) was blended with GO in contents of 0%, 0.5%, 1%, 1.5%, 2%, and 2.5%. The permanent deformation behavior of the modified asphalt binders was evaluated based on the zero shear viscosity (ZSV) parameter through a steady shear test approach. Superpave fatigue test and the linear amplitude sweep (LAS) method were used to evaluate the fatigue behavior of the binders. A bending beam rheometer (BBR) test was conducted to evaluate the low-temperature cracking behavior. Furthermore, the storage stability of the binders was investigated using a separation test. The results of the ZSV test showed that GO considerably enhanced the steady shear viscosity and ZSV value, showing a significant contribution of the GO to the deformation resistance; moreover, GO modification changed the asphalt binder’s behavior from Newtonian to shear-thinning flow. A notable improvement in fatigue life was observed with the addition of GO to the binder based on the LAS test results and Superpave fatigue parameter. The BBR test results revealed that compared to the control asphalt, the GO-modified binders showed lower creep stiffness (S) and higher creep rate (m-value), indicating increased cracking resistance at low temperatures. Finally, the GO-modified asphalt binders exhibited good storage stability under high temperatures.


1999 ◽  
Vol 565 ◽  
Author(s):  
N. Ariel ◽  
M. Eizenberg ◽  
E. Y. Tzou

AbstractIn order to achieve better performance of devices, the interconnects RC delay time, the limiting factor of the device speed today, must be reduced. This calls for a new interconnect stack: lower resistivity Copper and low k materials (k<3) as dielectrics.Fluorinated amorphous carbon (a-F:C) prepared by HDP- CVD is an attractive candidate as a low-k material. In this work we have studied the film, its stability and its interface with Copper metallization. The high density plasma CVD process resulted in a film which contains C and F at a ratio of 1:0.6 as determined by Nuclear Reactions Analysis. XPS analysis of the Cls transition indicated four types of bonds: C-C, C-CF, CF, and CF2. X-ray diffraction as well as high resolution TEM analyses proved that the film was amorphous at least up to 500°C anneal. For various applications, the advantage of adding a thin bi-layer of a-SiC/SiOx for adhesion promotion purposes was demonstrated. In addition, the interface of a-F:C and the adhesion promoter layer with Ta, TaN and Cu was studied. No interdiffusion was observed by SIMS after 400°C annealing. 500°C annealing caused F outdiffusion from the film and Cu diffusion into the adhesion promoter layer.


2014 ◽  
Vol 496-500 ◽  
pp. 1176-1179
Author(s):  
Li Tan ◽  
Yu Fang

LTX-77 test system is a large IC test system that is used for various kinds of analog IC, digital IC and analog digital mixed IC. It can be used to test DC parameters, AC parameters and logic functions. In the paper, the IC test platform is LTX-77 test system. IC ADC0804 was tested as the test object. The test method of IC is described in the view of actual test. The test results show that the test system is convenient and accurate, which has important practical value for IC manufacturers and users.


2007 ◽  
Vol 37 (3) ◽  
pp. 515-522 ◽  
Author(s):  
Tore Skrøppa ◽  
Ketil Kohmann ◽  
Øystein Johnsen ◽  
Arne Steffenrem ◽  
Øyvind M. Edvardsen

We present results from early tests and field trials of offspring from two Norway spruce ( Picea abies (L.) Karst.) seed orchards containing clones that have been transferred from high altitudes to sea level and from northern to southern latitudes. Seedlings from seeds produced in the low-altitude seed orchard developed frost hardiness later at the end of the growth season, flushed later in field trials, and grew taller than seedlings from seeds produced in natural stands. They had the lowest mortality rate and the lowest frequency of injuries in the field trials. Similar results were observed in seedlings from seeds produced in the southern seed orchard. We found no adverse effects of the changed growth rhythm. Seedlings from two seed crops in the southern orchard, produced in years with a warm and a cold summer, had different annual growth rhythms. The results are explained mainly by the effects of the climatic conditions during the reproductive phase. Seed crops from different years in the same seed orchard may produce seedlings that perform as if they were from different provenances. It is argued that the effects of the climatic conditions during seed production must contribute to the variation among provenances of Norway spruce.


2018 ◽  
Vol 8 (7) ◽  
pp. 1194 ◽  
Author(s):  
Touqeer Shoukat ◽  
Pyeong Jun Yoo

The pavement structure tends to shrink under low temperature conditions and cracks will appear upon crossing threshold binder stiffness. Decreasing the binder viscosity at such low temperatures, by introducing additional oil fraction (aromatics and saturates) in asphalt colloidal systems, may result in improved resistance to thermal cracking. A single multi-grade engine oil (5W30) was used in this study to analyze the rheological properties imparted to binders. Rotational Viscosity (RV) test revealed that after Rolling Thin Film Oven (RTFO) aging, fresh oil and waste oil have a similar effect on decreasing the viscosity of binder and construction temperatures, reducing them by 5~8 °C. Fourier Transform Infrared Spectroscopy (FTIR) test results showed an abrupt increase of carbonyl concertation when fresh engine oil was used for rejuvenation while waste engine oil was less susceptible to oxidative aging. Dynamic analysis of modified binders proved that engine oil has better thermal cracking resistance but relaxation ability of binders and rutting resistance was impaired. Filtered waste engine oil resulted in a 35% decrement in the stiffness of binder compared to virgin asphalt after short term aging but upper Performance Grade (PG) was compromised by 1~3 °C with 2.5% oil inclusion. Unfiltered waste engine oil proved to have the least overall performance compared to fresh and filtered waste engine oil.


2013 ◽  
Vol 275-277 ◽  
pp. 1911-1914 ◽  
Author(s):  
Han Jun Hu ◽  
Hui Zhou ◽  
Yu Gang Zheng ◽  
Kai Feng Zhang ◽  
Zhi Hua Wan

The bonded MoS2 films are widely used as solid lubricants in aerospace mechanisms due to their excellent tribological properties. Traditionally, the MoS2 was directly bonded on the Al substrate that was only treated by the technique named of sandblast. For improving the tribological properties of MoS2 films, micro arc oxidation (MAO) instead of sandblast was introduced as a new technique for treating of Al substrate. In this article, the tribological properties of MoS2 films which were bonded on different surface of Al substrate as mentioned above were discussed, respectively. It was concluded from the test results that the MoS2 films bonded on substrate treated by MAO have better tribological properties than those samples treated by sandblast. The endurance life against abrasion of the former is as high as twenty times of the latter by the stand test method of ball on disk using the UMT Multi-Specimen Test System. This test results could be illustrated by the following reasons. The first is the porous microstructures of MAO ceramic coatings on the Al substrate. The coatings have numerous pits to be good at increasing the binding force with the MoS2 films, and the pits can also provide a MoS2 lubricants reservoir during processes of friction. Both of them improved the MoS2 film’s ability of wear-protective. The second is that hardness of the coating is higher than the Al, and this ensures well wearing resistance, especially in practical application to big load-supporting moving parts, such as bearing, gear, etc…


2013 ◽  
Vol 690-693 ◽  
pp. 2371-2378
Author(s):  
Wei Pu Xu ◽  
Yi Ting Liu

A brief overview is given in the conventional domed bursting disc structure and manufacturing method. 316L stainless steel as a template is selected. With the investigation on bursting disc material tensile test method, the test results are summarized,also the burst results of disc burst pressure in different sizes. With the help of bursting disc material performance test and bursting disc burst pressure test of 316L , the test results provide a reference for other types of bursting disc.


Sign in / Sign up

Export Citation Format

Share Document