scholarly journals The Influence of Microstructure on the Mechanical Properties and Fracture Behavior of Medium Mn Steels at Different Strain Rates

Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4228 ◽  
Author(s):  
Zheng Wang ◽  
Juanping Xu ◽  
Yu Yan ◽  
Jinxu Li

The primary task of automotive industry materials is to guarantee passengers’ safety during a car crash. To simulate a car crash, the influence of strain rates on mechanical properties and fracture behavior of medium Mn steels with different Si content (0Si without δ-ferrite and 0.6Si with about 20% δ-ferrite) was conducted using the uniaxial tensile test. The results show that ultimate tensile strength is higher, whereas total elongation is lower in 0Si than in 0.6Si. As the strain rate increases, ultimate tensile strength and total elongation decrease in both 0Si and 0.6Si; nonetheless, total elongation of 0.6Si decreases faster. Meanwhile, the area reduction of 0.6Si increases as the strain rate increases. The microcrack′s number on a rolling direction (RD)-transverse direction (TD) surface is considerably increased; nonetheless, the microcrack′s size is restrained in 0.6Si compared with 0Si. Microcracks start at γ(α′)/α-ferrite interfaces in both 0Si and 0.6Si, whereas little nucleation sites have also been found at (γ(α′)+α-ferrite)/δ-ferrite boundaries in 0.6Si. Meanwhile, δ-ferrite reveals a higher capacity for microcrack arrest. As the strain rate decreases, increased lower crack growth results in fine and even dimples on fractographs with abundant second cracks on fractographs; meanwhile, the small microcrack′s number increases, while the large microcrack′s number decreases on an RD-TD surface.

Author(s):  
Mohammad Motalab ◽  
Rafsan A. S. I. Subad ◽  
Ayesha Ahmed ◽  
Pritom Bose ◽  
Ratul Paul ◽  
...  

Abstract In order to develop light weight electrical components, the nano-sized lead free solders have been identified as potential materials to provide better mechanical properties as compared to the conventional solders. Sn–Ag–Cu (SAC) solders have been widely acknowledged as one of the most promising replacements for Sn-Pb solders. In our previous work, mechanical properties of single crystal SAC solder material were investigated through atomistic simulation studies. In this work, the mechanical properties of nanocrystalline SAC305 (nc-SAC305) (96.5Sn-3.0Ag-0.5Cu) solder have been investigated through molecular dynamics (MD) simulations. A set of modified embedded atom method (MEAM) potential parameters have been proposed for nc-SAC solder. Impact of grain size, strain rate and temperature on the uniaxial tensile properties have been studied. The results have revealed an inverse Hall-Petch relationship in the nc-SAC305 material, and grain boundary decohesion is observed as the dominating failure mechanism. The results also suggest that the ultimate tensile strength of SAC305 significantly increases with increasing strain rate. Moreover, increased ductility and decreased ultimate tensile strength are observed at elevated temperatures.


Author(s):  
M. A. Malik ◽  
I. Salam ◽  
W. Muhammad

The extruded materials are extensively used in chemical, food and nuclear industry and generally offer a unique combination of strength and freedom with regard to design solutions. During extrusion, material flow occurs in the direction of applied force and as a result microstructure change. The process ultimately induces variation in the mechanical properties when tested along or across the extrusion direction. The uniaxial tensile test is a simple and versatile test to expose most of the mechanical properties of the materials required to ensure the reliability of the systems. In present study, the mechanical behavior of an Al-Mg-Si alloy extruded cylinder has been determined with the help of uniaxial tensile test in longitudinal and transverse orientations. The microstructural features revealed significant difference in two orientations and constituent particles were found aligned in the direction of extrusion. Tensile tests were conducted in displacement mode at different cross head speeds corresponding to strain rates ranging from 10−5 to 10−1 s−1. The tests were conducted at ambient temperature in air atmosphere. The data thus obtained include: yield strength, ultimate tensile strength, percent elongation and reduction of area. Comparing the trends of strength variation, the material shows higher yield strength in longitudinal orientation as compared to transverse orientation. A slight increase in the yield strength with increasing strain rate was found in both the orientations. The ultimate tensile strength in both the directions was found similar and there was no appreciable change with increasing strain rate. The elongation and reduction in area were found higher in the longitudinal orientation. The effect of strain rate on these properties was negligible up to maximum speed tested. In longitudinal orientation typical dimpled fracture was observed indicating deformation before failure. In transverse orientation shallow dimples were present. The present study revealed that the distribution of constituent particles in an extruded thick-walled cylinder has a pronounced effect on its mechanical behavior and fracture morphology.


2021 ◽  
Vol 63 (6) ◽  
pp. 529-536
Author(s):  
Daniel Kotzem ◽  
Lars Gerdes ◽  
Frank Walther

Abstract Additive manufacturing techniques enable the fabrication of new lightweight components with tailored mechanical properties. Considering current application fields, components are often over-dimensioned since a lack of data regarding the mechanical properties under compression or tensile loading at high strain rates is present. In this work, the influence of various strain rates on the mechanical properties of electron beam powder bed fusion Ti6Al4V lattice structures was investigated. In order to capture the damage mechanisms that occurred, a single unit cell plane was considered. In terms of mechanical characterization, high-speed tensile tests at nominal strain rates from 0.025 to 250 s-1 were carried out. By the additional use of a high-speed camera system and subsequent digital image correlation, an investigation of material reactions during shortest test times was enabled. Based on the results, a positive strain rate dependency was identified for yield and ultimate tensile strength for both investigated lattice types. In detail, an increase in ultimate tensile strength of 16 % for BCC- and 20 % for F2CCZ-specimens could be detected.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 790 ◽  
Author(s):  
Changping Tang ◽  
Kai Wu ◽  
Wenhui Liu ◽  
Di Feng ◽  
Xuezhao Wang ◽  
...  

The effects of Gd, Y content on the microstructure and mechanical properties of Mg-Gd-Y-Nd-Zr alloy were investigated using hardness measurements, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and uniaxial tensile testing. The results indicate that the alloys in as-cast condition mainly consist of α-Mg matrix and non-equilibrium eutectic Mg5.05RE (RE = Gd, Y, Nd). After solution treatment, the non-equilibrium eutectics dissolved into the matrix but some block shaped RE-rich particles were left at the grain boundaries and within grains. These particles are especially Y-rich and deteriorate the mechanical properties of the alloys. Both the compositions of the eutectic and the block shaped particle were independent of the total Gd, Y content of the alloys, but the number of the particles increases as the total Gd, Y content increases. The ultimate tensile strength increases as the total Gd, Y content decreases. A Mg-5.56Gd-3.38Y-1.11Nd-0.48Zr alloy with the highest ultimate tensile strength of 280 MPa and an elongation of 1.3% was fabricated. The high strength is attributed to the age hardening behavior and the decrease in block shaped particles.


2021 ◽  
Vol 7 ◽  
Author(s):  
Alexandra Glover ◽  
John G. Speer ◽  
Emmanuel De Moor

The addition of a tempering or austempering step to the double soaking of a 0.14C–7.17Mn (wt pct) steel was investigated in the present contribution. The double soaking heat treatment is a two-step intercritical annealing heat treatment, which generates microstructures of athermal martensite, retained austenite and ferrite when applied to medium manganese steels. Microstructures following double soaking and (aus)tempering contained a combination of retained austenite, athermal or tempered martensite, and blocky or bainitic ferrite. X-ray diffraction, dilatometry and transmission Kikuchi diffraction were utilized to investigate microstructural changes which occurred during tempering or austempering. The resulting mechanical properties were measured using uniaxial tensile testing. The double soaking plus tempering heat treatment was shown to generate an ultimate tensile strength of 1,340 MPa in combination with 28 pct total elongation while the double soaking plus austempering heat treatment resulted in an ultimate tensile strength of 1,675 MPa and total elongation of 22 pct. Overall, both novel heat treatments produced a combination of strength and ductility desired for the third generation of advanced high strength steels.


2004 ◽  
Vol 449-452 ◽  
pp. 305-308
Author(s):  
Lei Wang ◽  
Toshiro Kobayashi ◽  
Chun Ming Liu

Tensile test at loading velocities up to 10 m·s-1(strain rate up to 3.2x102s-1) was carried out forr SiCp/AC4CH composite and AC4CH alloy. The microstructure of the composite before and after tensile deformation was carefully examined with both optical microscope and SEM. The experimental results demonstrated that the ultimate tensile strength (UTS) and yield strength (YS) increase with increasing loading velocity up to 10 m·s-1. Comparing with AC4CH alloy, the fracture elongation of the composite is sensitivity with the increasing strain rate. The YS of both the composite and AC4CH alloy shows more sensitive than that of the UTS with the increasing strain rate, especially in the range of strain rate higher than 102s-1.


2021 ◽  
Vol 1016 ◽  
pp. 292-296
Author(s):  
Yuliya Igorevna Borisova ◽  
Diana Yuzbekova ◽  
Anna Mogucheva

An Al-4.57Mg-0.35Mn-0.2Sc-0.09Zr (wt. %) alloy was studied in the fine-grained state obtaining after equal channel angular pressing. The mechanical behavior of alloy at the temperatures 173 K, 298 K and 348 K and at strain rate 1×10–3 s–1 is studied. Increase of the temperature testing from 173 K to 348 K decreases the yield stress by 80 MPa, the ultimate tensile strength by 60 MPa while elongation-to failure increases by a factor of 1.4. It was found that at temperatures of 298 and 173 K, the studied alloy mainly demonstrates the mode of ductile fracture, and at a temperature of 348 K the mechanism can be described as mixed ductile-brittle fracture. It was also established that of the studied alloy is the temperature dependence of the size of the dimples on the fracture surface. The formation of smaller dimples in the samples deformed at 298 K was observed.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Yong Peng ◽  
Xuanzhen Chen ◽  
Shan Peng ◽  
Chao Chen ◽  
Jiahao Li ◽  
...  

In order to study the dynamic and fracture behavior of 6005 aluminum alloy at different strain rates and stress states, various tests (tensile tests at different strain rates and tensile shearing tests at five stress states) are conducted by Mechanical Testing and Simulation (MTS) and split-Hopkinson tension bar (SHTB). Numerical simulations based on the finite element method (FEM) are performed with ABAQUS/Standard to obtain the actual stress triaxialities and equivalent plastic strain to fracture. The results of tensile tests for 6005 Al show obvious rate dependence on strain rates. The results obtained from simulations indicate the feature of nonmonotonicity between the strain to fracture and stress triaxiality. The equivalent plastic strain reduces to a minimum value and then increases in the stress triaxiality range from 0.04 to 0.30. A simplified Johnson-Cook (JC) constitutive model is proposed to depict the relationship between the flow stress and strain rate. What is more, the strain-rate factor is modified using a quadratic polynomial regression model, in which it is considered to vary with the strain and strain rates. A fracture criterion is also proposed in a low stress triaxiality range from 0.04 to 0.369. Error analysis for the modified JC model indicates that the model exhibits higher accuracy than the original one in predicting the flow stress at different strain rates. The fractography analysis indicates that the material has a typical ductile fracture mechanism including the shear fracture under pure shear and the dimple fracture under uniaxial tensile.


Author(s):  
Jun Hua ◽  
Zhirong Duan ◽  
Chen Song ◽  
Qinlong Liu

In this paper, the mechanical properties, including elastic properties, deformation mechanism, dislocation formation and crack propagation of graphene/Cu (G/Cu) nanocomposite under uniaxial tension are studied by molecular dynamics (MD) method and the strain rate dependence is also investigated. Firstly, through the comparative analysis of tensile results of single crystal copper (Cu), single slice graphene/Cu (SSG/Cu) nanocomposite and double slice graphene/Cu (DSG/Cu) nanocomposite, it is found that the G/Cu nanocomposites have larger initial equivalent elastic modulus and tensile ultimate strength comparing with Cu and the more content of graphene, the greater the tensile strength of composites. Afterwards, by analyzing the tensile results of SSG/Cu nanocomposite under different strain rates, we find that the tensile ultimate strength of SSG/Cu nanocomposite increases with the increasing of strain rate gradually, but the initial equivalent elastic modulus basically remains unchanged.


2012 ◽  
Vol 602-604 ◽  
pp. 448-451
Author(s):  
Biao Guo ◽  
Sui Cai Zhang ◽  
Chuan Shui Sun ◽  
Chang Chun Ge

Sintered and forged powder metallurgy (P/M) steels were subjected to tensile, hardness and impact test, in order to understand the influence of the microstructure on the mechanical properties and fracture behavior. Ultimate tensile strength, yield strength, elongation, reduction in area, hardness and impact toughness all increase with a decrease in porosity. With the increase of density, the mode of fracture change from pure ductile in sintered necks of the material to complete brittle from fully dense pearlitic grains.


Sign in / Sign up

Export Citation Format

Share Document