scholarly journals Repair of Critical Size Bone Defects Using Synthetic Hydroxyapatite or Xenograft with or without the Bone Marrow Mononuclear Fraction: A Histomorphometric and Immunohistochemical Study in Rat Calvaria

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2854
Author(s):  
Jorge Luís da Silva Pires ◽  
Jorge José de de Carvalho ◽  
Mario José dos Santos Pereira ◽  
Igor da Silva Brum ◽  
Ana Lucia Rosa Nascimento ◽  
...  

Bone defects are a challenging clinical situation, and the development of hydroxyapatite-based biomaterials is a prolific research field that, in addition, can be joined by stem cells and growth factors in order to deal with the problem. This study compares the use of synthetic hydroxyapatite and xenograft, used pure or enriched with bone marrow mononuclear fraction for the regeneration of critical size bone defects in rat calvaria through histomorphometric (Masson’s staining) and immunohistochemical (anti-VEGF, anti-osteopontin) analysis. Forty young adult male rats were divided into five groups (n = 8). Animals were submitted to critical size bone defects (Ø = 8 mm) in the temporoparietal region. In the control group, there was no biomaterial placement in the critical bone defects; in group 1, it was filled with synthetic hydroxyapatite; in group 2, it was filled with xenograft; in group 3, it was filled with synthetic hydroxyapatite, enriched with bone marrow mononuclear fraction (BMMF), and in group 4 it was filled with xenograft, enriched with BMMF. After eight weeks, all groups were euthanized, and histological section images were captured and analyzed. Data analysis showed that in groups 1, 2, 3 and 4 (received biomaterials and biomaterials plus BMMF), a significant enhancement in new bone matrix formation was observed in relation to the control group. However, BMMF-enriched groups did not differ from hydroxyapatite-based biomaterials-only groups. Therefore, in this experimental model, BMMF did not enhance hydroxyapatite-based biomaterials’ potential to induce bone matrix and related mediators.

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 695
Author(s):  
Iris Jasmin Santos German ◽  
Karina Torres Pomini ◽  
Ana Carolina Cestari Bighetti ◽  
Jesus Carlos Andreo ◽  
Carlos Henrique Bertoni Reis ◽  
...  

To assess the effects of chronic alcoholism on the repair of bone defects associated with xenograft. Forty male rats were distributed in: control group (CG, n = 20) and experimental group (EG, n = 20), which received 25% ethanol ad libitum after a period of adaptation. After 90 days of liquid diet, the rats were submitted to 5.0-mm bilateral craniotomy on the parietal bones, subdividing into groups: CCG (control group that received only water with liquid diet and the defect was filled with blood clot), BCG (control group that received only water with liquid diet and the defect was filled with biomaterial), CEG (alcoholic group that received only ethanol solution 25% v/v with liquid diet and the defect was filled with blood clot), and BEG (alcoholic group that received only ethanol solution 25% v/v with liquid diet and the defect was filled with biomaterial). In the analysis of body mass, the drunk animals presented the lowest averages in relation to non-drunk animals during the experimental period. Histomorphologically all groups presented bone formation restricted to the defect margins at 60 days, with bone islets adjacent to the BCG biomaterial particles. CEG showed significant difference compared to BEG only at 40 days (17.42 ± 2.78 vs. 9.59 ± 4.59, respectively). In the birefringence analysis, in early periods all groups showed red-orange birefringence turning greenish-yellow at the end of the experiment. The results provided that, regardless of clinical condition, i.e., alcoholic or non-alcoholic, in the final period of the experiment, the process of bone defect recomposition was similar with the use of xenograft or only clot.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 124
Author(s):  
Ana Paula Farnezi Bassi ◽  
Vinícius Ferreira Bizelli ◽  
Tamires Mello Francatti ◽  
Ana Carulina Rezende de Moares Ferreira ◽  
Járede Carvalho Pereira ◽  
...  

Biomaterials for use in guided bone regeneration (GBR) are constantly being investigated and developed to improve clinical outcomes. The present study aimed to comparatively evaluate the biological performance of different membranes during the bone healing process of 8 mm critical defects in rat calvaria in order to assess their influence on the quality of the newly formed bone. Seventy-two adult male rats were divided into three experimental groups (n = 24) based on the membranes used: the CG—membrane-free control group (only blood clot, negative control), BG—porcine collagen membrane group (Bio-Guide®, positive control), and the PCL—polycaprolactone (enriched with 5% hydroxyapatite) membrane group (experimental group). Histological and histometric analyses were performed at 7, 15, 30, and 60 days postoperatively. The quantitative data were analyzed by two-way ANOVA and Tukey’s test (p < 0.05). At 7 and 15 days, the inflammatory responses in the BG and PCL groups were significantly different (p < 0.05). The PCL group, at 15 days, showed a large area of newly formed bone. At 30 and 60 days postoperatively, the PCL and BG groups exhibited similar bone healing, including some specimens showing complete closure of the critical defect (p = 0.799). Thus, the PCL membrane was biocompatible, and has the potential to help with GBR procedures.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3120
Author(s):  
Nicolas Söhling ◽  
Maximilian Leiblein ◽  
Alexander Schaible ◽  
Maren Janko ◽  
Joachim Schwäble ◽  
...  

Treatment of large bone defects is one of the great challenges in contemporary orthopedic and traumatic surgery. Grafts are necessary to support bone healing. A well-established allograft is demineralized bone matrix (DBM) prepared from donated human bone tissue. In this study, a fibrous demineralized bone matrix (f-DBM) with a high surface-to-volume ratio has been analyzed for toxicity and immunogenicity. f-DBM was transplanted to a 5-mm, plate-stabilized, femoral critical-size-bone-defect in Sprague-Dawley (SD)-rats. Healthy animals were used as controls. After two months histology, hematological analyses, immunogenicity as well as serum biochemistry were performed. Evaluation of free radical release and hematological and biochemical analyses showed no significant differences between the control group and recipients of f-DBM. Histologically, there was no evidence of damage to liver and kidney and good bone healing was observed in the f-DBM group. Reactivity against human HLA class I and class II antigens was detected with mostly low fluorescence values both in the serum of untreated and treated animals, reflecting rather a background reaction. Taken together, these results provide evidence for no systemic toxicity and the first proof of no basic immunogenic reaction to bone allograft and no sensitization of the recipient.


Author(s):  
Saboreh Jafari ◽  
Rostam Jalali ◽  
Cyrus Jalili ◽  
Tahereh Jamshidpoor

Abstract The treatment of extensive skin burns remains as a challenge for health care personnel. This study aimed to compare the combination of bone marrow and wheat flour with standard treatment on animal models. In this experimental study, 45 male rats were randomly assigned into three groups as follows: The first group was control (no treatment), the second group received bone marrow and wheat flour combination topically, and the third group received standard treatment (1% silver sulfadiazine). The treatment lasted for up to 21 days. On the 22nd day, the rats were killed. The number of blood vessels and hair follicles was measured in the burn wound bed. The area and depth of the wound were also measured. Data were analyzed using SPSS software version 16. The results showed that, complete closure of the wound was better in the bone marrow treated group compared with the group receiving the silver sulfadiazine and the control group. Furthermore, the wound healing was better in the silver sulfadiazine group compared with the control group. Microscopic examination revealed a significant increase in the number of hair follicles and blood vessels in the bone marrow and silver groups compared with the control group. The results showed that, the group treated with bone marrow, because of the presence of mesenchymal and stem cells can cause stimulating angiogenesis and producing vegetative tissue, hence it improved maturation, shrinkage, and contraction of the wound in comparison with the silver sulfadiazine and control groups


Author(s):  
Imad A. Al-Obaidi ◽  
Nada N. Al-Shawi

Abstract At any moment, the continuous usage of medications can accompanied by DNA damage and the accumulation of such damages can cause serious consequences. Antidepressants are long-term used drugs and the incidence of their genotoxic impacts cannot be excluded. Therefore, this work was designed to investigate the possible genotoxic effects of the commonly used antidepressants (fluoxetine and amitriptyline) in adult male rats. Detection of DNA damage in individual cells was assessed by comet and micronucleus assays in three different cell populations i.e. liver, testis and bone marrow tissues of 24 swiss albino adult male rats. The animals were randomly allocated into three groups of 8 rats each: Group I - rats orally-administered distilled water via gavage tube for four weeks as a negative control. Group II - rats orally-treated with fluoxetine hydrochloride solution (7.2mg/kg/day) via gavage tube for four weeks. Group III - rats orally-treated with amitriptyline hydrochloride solution (27mg/kg/day) via gavage tube for four weeks. The results showed that both drugs (Group II and Group III) induced the same extent of DNA damage, as evidenced by a significantly higher DNA fragmentation in liver and testis tissues with increased frequencies of micronuclei formation in bone marrow tissues as compared with the negative control (Group I). These findings indicates that both Fluoxetine and Amitriptyline have genotoxic potentials and can induce the same extent of cytogenetic damage in rats. Special precautions and medical supervision should be taken in consideration with their uses.


2020 ◽  
Author(s):  
Reza Rahbarghazi ◽  
Rana Keyhanmanesh ◽  
Fatemeh Mirershadi ◽  
Hossain Heiran ◽  
Hesam Saghaei Bagheri ◽  
...  

Abstract Background There are still challenges regarding c-kit+ cells therapeutic outcome in the clinical setting. Here, we examined of c-kit+ cells effect on the alleviation of asthma by modulating miRNAs expression.MethodsTo induce asthma, male rats were exposed to ovalbumin. Bone marrow-derived c-kit+ cells were enriched by MACS. Animals were classified into four groups (each in 6 rats). Control rats received PBS intratracheally; Ovalbumin-sensitized rats received PBS intratracheally; Ovalbumin-sensitized rats received PBS intratracheally containing 3×105 c-kit+ and c-kit- cells. Cells were stained with Dil fluorescent dye to track in vivo condition. Pathological changes were monitored in asthmatic rats after transplantation of c-kit+ and c-kit- cells. Serum levels of IL-4 and INF-γ were measured by ELISA. Transcription of miRNAs (-126 and 133) were assessed by real-time PCR analysis.ResultsPathological examination, Th1 and Th2 associated cytokines fluctuation confirmed the occurrence of asthma in rats indicated by chronic changes and prominent inflammation compared to the control group (p<0.05). Both c-kit+ and c-kit- cells were verified in pulmonary niche. Administration of c-kit positive cells had potential to changes INF-γ/IL-4 ratio and closed to the normal values compared to matched-control asthmatic rats (p<0.05). We also found that c-kit+ cells regulated the expression of miRNA-126 and -133, indicated by increase of miRNA-133 and decrease of miRNA-126 compared to cell-free sensitized groups (p<0.05). c-kit- cells were unable to promote any therapeutic outcomes in asthmatic milieu.ConclusionsIn overall, c-kit+ cells had potential to diminish asthma-related pathologies presumably by controlling the transcription of miRNA-126 and -133.


2008 ◽  
Vol 24 (9) ◽  
pp. 587-593 ◽  
Author(s):  
MA Alghazal ◽  
I Šutiaková ◽  
N Kovalkovičová ◽  
J Legáth ◽  
M Falis ◽  
...  

Lead increasingly contributes to pollution of the environment and may play a role in the development of adverse effects in the human and animal body. Data concerning its mutagenic, clastogenic, and carcinogenic properties have been conflicting. In this study, we evaluated the frequency of micronuclei in bone marrow erythrocytes of rats treated with lead acetate trihydrate. Outbred Wistar rats were exposed to a daily dose of 100 mg/L drinking water for 125 days. The mean value of the total number of micronuclei observed in polychromatic erythrocytes of female rats was significantly higher than that found in the control group (13.375 ± 2.722 against 9.625 ± 3.204 micronuclei/1000 cells; P = 0.024 in ANOVA). In exposed female animals, no significant reduction of the ratio of polychromatic to normochromatic erythrocytes was observed (0.990 ± 0.228 against 1.208 ± 0.195; P = 0.060 in ANOVA). The effects of lead acetate trihydrate in male rats are both cytotoxic and genotoxic because of a decrease in ratio of polychromatic to normochromatic erythrocytes (0.715 ± 0.431 against 1.343 ± 0.306; P = 0.023, ANOVA followed by Tukey test) and an increase in frequency of micronucleated polychromatic erythrocytes (24.167 ± 7.859 against 4.0 ± 4.528 micronuclei/1000 cells; P ≤ 0.001, ANOVA followed by Tukey test), respectively.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Tianlin Liu ◽  
Xin Zhang ◽  
Yuan Luo ◽  
Yuanliang Huang ◽  
Gang Wu

Bone tissue engineering technique is a promising strategy to repair large-volume bone defects. In this study, we developed a 3-dimensional construct by combining icariin (a small-molecule Chinese medicine), allogeneic bone marrow-derived mesenchymal stem cells (BMSCs), and a siliceous mesostructured cellular foams-poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (SMC-PHBHHx) composite scaffold. We hypothesized that the slowly released icariin could significantly promote the efficacy of SMC-PHBHHx/allogeneic BMSCs for repairing critical-size bone defects in rats. In in vitro cellular experiments, icariin at optimal concentration (10−6 mol/L) could significantly upregulate the osteogenesis- and angiogenesis-related genes and proteins, such as Runx2, ALP, osteocalcin, vascular endothelial growth factors, and fibroblast growth factors, as well as the mineralization of BMSCs. Icariin that was adsorbed onto the SMC-PHBHHx scaffold showed a slow release profile within a 2-week monitoring span. Eight weeks after implantation in calvarial critical-size bone defects, the constructs with icariin were associated with significantly higher bone volume density, trabecular thickness, trabecular number, and significantly lower trabecular separation than the constructs without icariin. Histomorphometric analysis showed that icariin was also associated with a significantly higher density of newly formed blood vessels. These data suggested a promising application potential of the icariin/SMC-PHBHHx/allogeneic BMSCs constructs for repairing large-volume bone defects in clinic.


Sign in / Sign up

Export Citation Format

Share Document