scholarly journals Plasma Treatment for Cellulose in Tobacco Paper-Base: The Improvement of Surface Hydrophilicity and Mechanical Property

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 418
Author(s):  
Zhao Zhang ◽  
Quan Shu ◽  
Shaolin Ge ◽  
Shouhu Xuan

This paper reports a plasma treatment (PT) method for improving the surface hydrophilicity and mechanical properties of cellulose in reconstituted tobacco paper-base. The absorption and infiltration rates of water droplets on PT-reconstituted tobacco paper-base-15s were significantly accelerated. Notably, the increased content of methylene and alkyl groups enabled the tobacco paper-base to absorb more useful substrates in the tobacco extract after plasma treatment. In addition, the tensile mechanical performance of reconstituted tobacco was significantly improved after plasma treatment, which indicated that the content of organic matter absorbed by the tobacco paper-base sheet was increased. Moreover, tobacco extract infiltrated on the surface of PT-reconstituted tobacco paper-base reached 37.7° within 30 s, while it reached 79.9° on the reconstituted tobacco paper-base. Finally, the mechanism by which the surface hydrophilicity and mechanical properties of the cellulose in the tobacco paper-base were improved is discussed.

2011 ◽  
Vol 311-313 ◽  
pp. 1859-1862
Author(s):  
Hua Ming Wang ◽  
Han Xing Zhao ◽  
Yong Jia Dai ◽  
Xiao Song Rui

Hot works is an important method for fairing the ship steel plate to improve the quality of shipbuilding, while the mechanical performance of the ship steel plate may be affected during the fairing process, which could result to some safe problems on the structural strength. DH32 high-strength ship steel plate, which is a kind of widely used material in shipbuilding industry, is taken as an object of the present experimental study. Some main parameters of the plate’s mechanical property through hot-works treatment for different times are investigated systematically. Through analyzing the variation of the mechanical properties, some conclusions are drawn and some useful suggestions put forward.


We report on the preparation of nanocomposites using epoxy and vinylester blend in which nanoiron filler was dispersed to evaluate the mechanical performance. Different weight ratios viz.1,2,3,4,5 & 7wt.% of nanoiron particles were dispersed into the matrix to prepare different systems to evaluate the optimization of performance. Nanoiron was also prepared by chemical reduction method and nanocomposites were prepared by hand layup process. Three blade Mechanical stirrer and ultra-sonicator was used while preparing the modified to keep the non-homogeneity nanoparticle at bay. Mechanical properties such as hardness, tensile strength, flexural strength, impact strength and compression strength properties were performed. Nanoiron particles functionalization nepotisms the fabrication composites through the remedial temperature at low as associated to the as-synthesised nano particles occupied vinylester nano composites. Mechanical property values improved owing to the standardized nanoparticle chemical bonding and spreading between vinylester matrix and nanoparticles. Then the combination nanoiron particles into the vinylester resin matrix it becomes magnetically harder. Machines generated mechanical property values were compared and analysed with system generated software analysis of variance (ANOVA) values. Machine values and ANOVA values were measured for the specimens of epoxy+vinylester+nanoiron, where the nanoiron is varying viz. 1, 2, 3, 4, 5 and 7 wt.%.


Forests ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 32
Author(s):  
Guofang Wu ◽  
Yinlan Shen ◽  
Feng Fu ◽  
Juan Guo ◽  
Haiqing Ren

Wood is an anisotropic material, the mechanical properties of which are strongly influenced by its microstructure. In wood, grain compression strength and modulus are the weakest perpendicular to the grain compared to other grain directions. FE (finite element) models have been developed to investigate the mechanical properties of wood under transverse compression. However, almost all existing models were deterministic. Thus, the variations of geometry of the cellular structure were not considered, and the statistical characteristic of the mechanical property was not involved. This study aimed to develop an approach to investigate the compression property of wood in a statistical sense by considering the irregular geometry of wood cells. First, the mechanical properties of wood under radial perpendicular to grain compression was experimentally investigated, then the statistical characteristic of cell geometry was extracted from test data. Finally, the mechanical property of wood was investigated using the finite element method in combination with the Monte Carlo Simulation (MCS) techniques using randomly generated FE models. By parameter sensitivity analysis, it was found that the occurrence of the yield points was caused by the bending or buckling of the earlywood axial tracheid cell wall in the tangential direction. The MCS-based stochastic FE analysis was revealed as an interesting approach for assessing the micro-mechanical performance of wood and in assisting in understanding the mechanical behavior of wood based on its hierarchical structure.


2019 ◽  
Vol 70 (10) ◽  
pp. 3469-3472

Weldability involves two aspects: welding behavior of components and safety in operation. The two aspects will be reduced to the mechanical characteristics of the elements and to the chemical composition. In the case of steel reinforcing rebar’s, it is reduces to the percentage of Cech(carbon equivalent) and to the mechanical characteristics: the yielding limit, the ultimate limit, and the elongations which after that represent the ductility class in which the re-bars is framed. The paper will present some types of steel reinforcing rebar’s with its mechanical characteristics and the welding behavior of those elements. In the current work, process-related behavior of welded reinforcement, joint local and global mechanical properties, and their correlation with behavior of normal reinforcement and also the mechanical performance resulted in this type of joints. Keywords: welding behavior, ultimate limit, reinforcing rebar’s


2020 ◽  
Vol 13 ◽  
Author(s):  
V. Arumugaprabu ◽  
K.Arun Prasath ◽  
S. Mangaleswaran ◽  
M. Manikanda Raja ◽  
R. Jegan

: The objective of this research is to evaluate the tensile, impact and flexural properties of flax fiber and basalt powder filled polyester composite. Flax fiber is one of the predominant reinforcement natural fiber which possess good mechanical properties and addition of basalt powder as a filler provides additional support to the composite. The Composites are prepared using flax fiber arranged in 10 layers with varying weight percentage of the basalt powder as 5 wt.%, 10 wt.%, 15 wt.%, 20 wt.%, 25 wt.% and 30 wt.% respectively. From the results it is inferred that the composite combination 10 Layers of flax / 5 wt.%, basalt Powder absorbs more tensile load of 145 MPa. Also, for the same combination maximum flexural strength is about 60 MPa. Interestingly in the case of impact strength more energy was absorbed by 10 layers of flax and 30 wt.% of basalt powder. In addition, the failure mechanism of the composites also discussed briefly using SEM studies.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1124
Author(s):  
Zhifang Liang ◽  
Hongwu Wu ◽  
Ruipu Liu ◽  
Caiquan Wu

Green biodegradable plastics have come into focus as an alternative to restricted plastic products. In this paper, continuous long sisal fiber (SF)/polylactic acid (PLA) premixes were prepared by an extrusion-rolling blending process, and then unidirectional continuous long sisal fiber-reinforced PLA composites (LSFCs) were prepared by compression molding to explore the effect of long fiber on the mechanical properties of sisal fiber-reinforced composites. As a comparison, random short sisal fiber-reinforced PLA composites (SSFCs) were prepared by open milling and molding. The experimental results show that continuous long sisal fiber/PLA premixes could be successfully obtained from this pre-blending process. It was found that the presence of long sisal fibers could greatly improve the tensile strength of LSFC material along the fiber extension direction and slightly increase its tensile elongation. Continuous long fibers in LSFCs could greatly participate in supporting the load applied to the composite material. However, when comparing the mechanical properties of the two composite materials, the poor compatibility between the fiber and the matrix made fiber’s reinforcement effect not well reflected in SSFCs. Similarly, the flexural performance and impact performance of LSFCs had been improved considerably versus SSFCs.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 41
Author(s):  
Yin-Yu Chang ◽  
Cheng-Hsi Chung

Multi-element material coating systems have received much attention for improving the mechanical performance in industry. However, they are still focused on ternary systems and seldom beyond quaternary ones. High entropy alloy (HEA) bulk material and thin films are systems that are each comprised of at least five principal metal elements in equally matched proportions, and some of them are found possessing much higher strength than traditional alloys. In this study, CrVTiNbZr high entropy alloy and nitrogen contained CrVTiNbZr(N) nitride coatings were synthesized using high ionization cathodic-arc deposition. A chromium-vanadium alloy target, a titanium-niobium alloy target and a pure zirconium target were used for the deposition. By controlling the nitrogen content and cathode current, the CrNbTiVZr(N) coating with gradient or multilayered composition control possessed different microstructures and mechanical properties. The effect of the nitrogen content on the chemical composition, microstructure and mechanical properties of the CrVTiNbZr(N) coatings was investigated. Compact columnar microstructure was obtained for the synthesized CrVTiNbZr(N) coatings. The CrVTiNbZrN coating (HEAN-N165), which was deposited with nitrogen flow rate of 165 standard cubic centimeters per minute (sccm), exhibited slightly blurred columnar and multilayered structures containing CrVN, TiNbN and ZrN. The design of multilayered CrVTiNbZrN coatings showed good adhesion strength. Improvement of adhesion strength was obtained with composition-gradient interlayers. The CrVTiNbZrN coating with nitrogen content higher than 50 at.% possessed the highest hardness (25.2 GPa) and the resistance to plastic deformation H3/E*2 (0.2 GPa) value, and therefore the lowest wear rate was obtained because of high abrasion wear resistance.


2021 ◽  
pp. 073168442110140
Author(s):  
Hossein Ramezani-Dana ◽  
Moussa Gomina ◽  
Joël Bréard ◽  
Gilles Orange

In this work, we examine the relationships between the microstructure and the mechanical properties of glass fiber–reinforced polyamide 6,6 composite materials ( V f = 54%). These materials made by thermocompression incorporate different grades of high fluidity polyamide-based polymers and two types of quasi-UD glass fiber reinforcement. One is a classic commercial fabric, while the other specially designed and manufactured incorporates weaker tex glass yarns (the spacer) to increase the planar permeability of the preform. The effects of the viscosity of the polymers and their composition on the wettability of the reinforcements were analyzed by scanning electron microscopy observations of the microstructure. The respective influences of the polymers and the spacer on the mechanical performance were determined by uniaxial tensile and compression tests in the directions parallel and transverse to the warp yarns. Not only does the spacer enhance permeability but it also improves physical and mechanical properties: tensile longitudinal Young’s modulus increased from 38.2 GPa to 42.9 GPa (13% growth), tensile strength increased from 618.9 MPa to 697 MPa (3% growth), and decrease in ultimate strain from 1.8% to 1.7% (5% reduction). The correlation of these results with the damage observed post mortem confirms those acquired from analyses of the microstructure of composites and the rheological behaviors of polymers.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1058
Author(s):  
Hikaru Okubo ◽  
Haruka Kaneyasu ◽  
Tetsuya Kimura ◽  
Patchiya Phanthong ◽  
Shigeru Yao

Each year, increasing amounts of plastic waste are generated, causing environmental pollution and resource loss. Recycling is a solution, but recycled plastics often have inferior mechanical properties to virgin plastics. However, studies have shown that holding polymers in the melt state before extrusion can restore the mechanical properties; thus, we propose a twin-screw extruder with a molten resin reservoir (MSR), a cavity between the screw zone and twin-screw extruder discharge, which retains molten polymer after mixing in the twin-screw zone, thus influencing the polymer properties. Re-extruded recycled polyethylene (RPE) pellets were produced, and the tensile properties and microstructure of virgin polyethylene (PE), unextruded RPE, and re-extruded RPE moldings prepared with and without the MSR were evaluated. Crucially, the elongation at break of the MSR-extruded RPE molding was seven times higher than that of the original RPE molding, and the Young’s modulus of the MSR-extruded RPE molding was comparable to that of the virgin PE molding. Both the MSR-extruded RPE and virgin PE moldings contained similar striped lamellae. Thus, MSR re-extrusion improved the mechanical performance of recycled polymers by optimizing the microstructure. The use of MSRs will facilitate the reuse of waste plastics as value-added materials having a wide range of industrial applications.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1021
Author(s):  
Yunzhao Li ◽  
Huaping Tang ◽  
Ruilin Lai

Resistance spot welded 1.2 mm (t)-thick 1400 MPa martensitic steel (MS1400) samples are fabricated and their microstructure, mechanical properties are investigated thoroughly. The mechanical performance and failure modes exhibit a strong dependence on weld-nugget size. The pull-out failure mode for MS1400 steel resistance spot welds does not follow the conventional weld-nugget size recommendation criteria of 4t0.5. Significant softening was observed due to dual phase microstructure of ferrite and martensite in the inter-critical heat affected zone (HAZ) and tempered martensite (TM) structure in sub-critical HAZ. However, the upper-critical HAZ exhibits obvious higher hardness than the nugget zone (NZ). In addition, the mechanical properties show that the cross-tension strength (CTS) is about one quarter of the tension-shear strength (TSS) of MS1400 weld joints, whilst the absorbed energy of cross-tension and tension-shear are almost identical.


Sign in / Sign up

Export Citation Format

Share Document