scholarly journals Marine-Derived Chitosan Nanoparticles Improved the Intestinal Histo-Morphometrical Features in Association with the Health and Immune Response of Grey Mullet (Liza ramada)

Marine Drugs ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. 611 ◽  
Author(s):  
Mahmoud A.O. Dawood ◽  
Mahmoud S. Gewaily ◽  
Ali A. Soliman ◽  
Mustafa Shukry ◽  
Asem A. Amer ◽  
...  

Marine-derived substances are known for their beneficial influences on aquatic animals’ performances and are recommended to improve intestinal health, immunity, and anti-oxidative status. The present study investigates the role of chitosan nanoparticles on the intestinal histo-morphometrical features in association with the health and immune response of Grey Mullet (Liza ramada). Chitosan nanoparticles are included in the diets at 0, 0.5, 1, and 2 g/kg and introduced to fish in a successive feeding trial for eight weeks. The final body weight (FBW), weight gain (WG), and specific growth rate (SGR) parameters are significantly increased while feed conversion ratio (FCR) decreases by chitosan nanoparticles compared to the control (p < 0.05). The morphometric analysis of the intestines reveals a significant improvement in villus height, villus width, and the number of goblet cells in chitosan-treated groups in a dose-dependent manner. Additionally, there is a positive correlation between the thickness of the enterocyte brush border and the chitosan dose, referring to an increasing absorptive activity. Histologically, the intestinal wall of Grey Mullet consists of four layers; mucosa, sub-mucosa, tunica muscularis (muscular layers), and serosa. The histological examination of the L. ramada intestine shows a normal histo-morphology. The epithelial layer of intestinal mucosa is thrown into elongated finger-like projections, the intestinal villi. The values of hemoglobin, hematocrit, red blood cells (RBCs), total protein (TP), albumin, and globulin are significantly increased in fish fed 1, and 2 g/kg of chitosan nanoparticles compared to fish fed 0 and 0.5 g/kg (p < 0.05). The highest levels of TP and albumin are observed in fish fed 1 g/kg diet (p < 0.05). The lysozyme activity and phagocytic index are significantly enhanced by feeding chitosan nanoparticles at 0.5, 1, and 2 g/kg, whereas the phagocytic activity is improved in fish fed 1 and 2 g/kg (p < 0.05). The highest lysozyme activity and phagocytic index are observed in fish fed 1 g/kg. SOD is significantly activated by feeding chitosan nanoparticles at 1 g/kg. Simultaneously, glutathione peroxidase (GPx) and catalase (CAT) activities also are enhanced by feeding chitosan at 1 and 2 g/kg, compared to fish fed 0 and 0.5 g/kg (p < 0.05). The highest GPx and CAT activities are observed in fish fed 1 g/kg (p < 0.05). Conversely, the malondialdehyde (MDA) levels are decreased by feeding chitosan at 1 and 2 g/kg, with the lowest being in fish fed 1 g/kg (p < 0.05). To summarize, the results elucidate that L. ramada fed dietary chitosan nanoparticles have a marked growth rate, immune response, and anti-oxidative response. These improvements are attributed to the potential role of chitosan nanoparticles in enhancing intestinal histo-morphometry and intestinal health. These results soundly support the possibility of using chitosan nanoparticles at 1–2 g/kg as a feasible functional supplement for aquatic animals.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3872-3872
Author(s):  
Hyun-Kyu Kang ◽  
Myong-Suk Park ◽  
Shee-Eun Lee ◽  
Joon-Haeng Rhee ◽  
Jung-Sun Park ◽  
...  

Abstract Flagellin, the principal component of bacterial flagella, interacts with Toll-like receptor (TLR5) and induces the generation of a pro-inflammation response and activation of host dendritic cells (DCs) in vivo. In this study, we investigated the role of Vibrio parahaemolyticus (V. parahaemolyticus)-derived flagellin as a DC maturation-inducing molecule. V. parahemolyticus-derived flagellin (100–1,000 ng/ml) induced the maturation of human monocyte-derived dendritic cells in a concentration-dependent manner with maximal effect at 500 ng/ml of flagellin as determined by increased levels of surface markers, namely, CD1a, CD80, CD86, CD83, and HLA-DR, a response which could be compared with the phenotypic change in immature DCs (iDCs) treated with lipopolysaccharide (LPS) or cytokine cocktails (CC) with TNF-α, IL-1β, IL-6, and PGE2. Moreover, V. parahaemolyticus-derived flagellin also reduced phagocytic activity, and increased IL-12 production in a polymyxin B-insensitive manner and DC-mediated T cell proliferation, which is comparable with that of LPS- or CC-treated iDCs at several responder to stimulator ratios, suggesting the functional maturation of DCs by V. parahaemolyticus-derived flagellin. Maturation of DCs by V. parahaemolyticus-derived flagellin also elicited a significant increase in specific cytotoxic activity against target cells at several effector to target cells ratios as determined by 51Cr-release assay, and induced Th1-type immune response, such as increase in INF-γ producing cells, determined by ELISPOT assay and analysis of intracellular cytokine staining assay. Taken together, this study demonstrates the role of V. parahaemolyticus-derived flagellin in the functional maturation of DCs, and suggests that V. parahaemolyticus-derived flagellin as a useful molecule for the development of a DC-based immunotherapy against tumors.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wen-jian Chen ◽  
Xiao Yu ◽  
Xin-Rong Yuan ◽  
Bang-jie Chen ◽  
Na Cai ◽  
...  

A member of the interleukin (IL)-1 superfamily was IL-36, which contained IL-36α, IL-36β, IL-36γ, and IL-36Ra. Heterotrimer complexes, consisting of heterodimeric receptor complexes and IL-36 agonist, gave signals through intracellular functional domains, so as to bind to downstream proteins and induce inflammatory response. IL-36 agonists upregulated mature-associated CD80, CD86, MHCII, and inductively produced several pro-inflammatory cytokines through the IL-36R-dependent manner in dendritic cells (DCs). Besides, DCs had the ability to initiate the differentiation of helper T (Th) cells. Up to date, the role of IL-36 in immunity, inflammation and other diseases is of great importance. Additionally, autoimmune diseases were characterized by excessive immune response, resulting in damage and dysfunction of specific or multiple organs and tissues. Most autoimmune diseases were related to inflammatory response. In this review, we will conclude the recent research advances of IL-36 in the occurrence and development of autoimmune diseases, which may provide new insight for the future research and the treatment of these diseases.


2021 ◽  
Vol 11 ◽  
Author(s):  
Kunmei Liu ◽  
Dantong Hong ◽  
Fan Zhang ◽  
Xin Li ◽  
Meng He ◽  
...  

Autophagy is a key element of innate immune response against invading pathogens including Mycobacterium tuberculosis (M. tuberculosis). The emerging roles of microRNAs in regulating host antimicrobial responses against M. tuberculosis have gained widespread attention. However, the process by which miRNAs specifically influence antibacterial autophagy during mycobacterial infection is largely uncharacterized. In this study, we demonstrate a novel role of miR-106a in regulating macrophage autophagy against M. tuberculosis. H37Ra infection leads to downregulation of miR-106a in a time- and dose-dependent manner and concomitant upregulation of its three targets (ULK1, ATG7, and ATG16L1) in THP-1 macrophages. MiR-106a could inhibit autophagy activation and antimicrobial responses to M. tuberculosis by targeting ULK1, ATG7, and ATG16L1. Overexpression of miR-106a dramatically inhibited H37Ra-induced activation of autophagy in human THP-1 macrophages, whereas inhibitors of miR-106a remarkably promoted H37Ra-induced autophagy. The inhibitory effect of miR-106a on autophagy process during mycobacterial infection was also confirmed by Transmission Electron Microscope (TEM) observation. More importantly, forced expression of miR-106a increased mycobacterial survival, while transfection with miR-106a inhibitors attenuated the survival of intracellular mycobacteria. Taken together, these data demonstrated that miR-106a functioned as a negative regulator in autophagy and antimicrobial effects by targeting ULK1, ATG7, and ATG16L1 during M. tuberculosis infection, which may provide a potential target for developing diagnostic reagents or antibacterials against tuberculosis.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Helen Rogers ◽  
David W. Williams ◽  
Gui-Jie Feng ◽  
Michael A. O. Lewis ◽  
Xiao-Qing Wei

Human infections involving yeast of the genusCandidaoften occur in the presence of bacteria, and, as such, it is important to understand how these bacteria influence innate host immunity towardsCandida. Dectin-1 is a cell receptor of macrophages forCandida albicansrecognition. The aim of this study was to examine dectin-1 expression by monocytes after stimulation with bacterial lipopolysaccharide (LPS), followed by heat-killedC. albicans(HKC). Freshly isolated human peripheral blood monocytes (PBMCs) and human monocytes cell line (THP-1) cells expressed low levels of dectin-1. Stimulation with LPS and GM-CSF/IL-4 was found to increase dectin-1 expression in both CD14+human PBMC and THP-1 cells. Enhanced dectin-1 expression resulted in increased phagocytosis ofCandida. When THP-1 cells were challenged only with HKC, detectable levels of IL-23 were not evident. However, challenge by LPS followed by varying concentrations of HKC resulted in increased IL-23 expression by THP-1 cells in HKC dose-dependent manner. Increased expression of IL-17 by PBMC also occurred after stimulation withCandidaand LPS. In conclusion, bacterial LPS induces an enhanced immune response toCandidaby immune cells, and this occurs through increasing dectin-1 expression.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Fawzy I. Magouz ◽  
Mohamed Essa ◽  
Mohamed Mansour ◽  
Mahmoud A.O. Dawood

AbstractFour diets were prepared to include a mixture of medium-chain fatty acids and taurine as a digestive/metabolic enhancer (DME, AQUAGEST®) at 0, 1, 2, and 3 g DME/kg diet and fed for common carp (initial weight, 4.55±0.03 g) for 70 days. Dietary DME significantly increased the final weight, weight gain, specific growth rate, feed intake, and protein efficiency and decreased feed conversion ratio in a dose-dependent manner (P<0.05). The body lipid composition was significantly improved by feeding DME at 2 g/kg diet (P=0.0141). The intestine villus length and the number of goblet cells were significantly increased in fish fed 2 g DME/kg diet (P<0.05). The intestinal villi displayed increased length, branching, and density by supplementing DME to common carp diets. Fish fed DME at 2 g/kg diet displayed markedly decreased aspartate aminotransferase (AST) and alanine aminotransferase (ALT) (P =0.025 and P =0.043) and increased total protein and globulin (P =0.002 and P =0.003). Additionally, fish fed 2 and 3 g DME/kg levels displayed significantly increased albumin levels (P =0.006). Lysozyme and phagocytic activities were increased by feeding DME at 2 g/kg diet, while the phagocytic index increased by 2 and 3 g/kg diet (P<0.05). The optimal supplementation level of DME is 1.63 to 2.05 g/kg for common carp based on the polynomial regression analysis. In conclusion, common carp fed diets with a mixture of medium-chain fatty acids and taurine displayed improved growth, digestion activity, and immune response.


2019 ◽  
Vol 20 (7) ◽  
pp. 1553
Author(s):  
Hailong Kong ◽  
Chuanlei Dong ◽  
Wanghui Jing ◽  
Zhen Tian ◽  
Minyuan Zheng ◽  
...  

High population density alters insect prophylactic immunity, with density-dependent prophylaxis (DDP) being reported in many polyphonic insects. However, the molecular mechanism for DDP remains unclear. In current study, the role of tyramine β-hydroxylase (Tβh) in the immune response of M. separata larvae that were subject to different rearing densities conditions was investigated. The tyramine β-hydroxylase activity of larvae from high density treatments (10 and 30 larvae per jar) was significantly higher than that of the larvae from low density treatments (one, two, and five larvae/jar). A tyramine β-hydroxylase (designated MsTβh) containing a 1779 bp open reading frame was identified. Multiple sequence alignment and phylogenetic analysis indicated that MsTβh was orthologous to the Tβh that was found in other lepidopterans. Elevated MsTβh expression was observed in larvae under high density (10 larvae per jar). Silencing MsTβh expression by the injection of dsRNA in larvae from the high density treatment produced a 25.1% reduction in octopamine levels, while at the same time, there was a significant decrease in phenoloxidase (PO) and lysozyme activity, total haemocyte counts, and survival against Beauveria infection 56.6%, 88.5%, 82.0%, and 55.8%, respectively, when compared to control larvae. Our findings provide the first insights into how MsTβh mediates the octopamine level, which in turn modulates the immune response of larvae under different population densities.


1995 ◽  
Vol 9 (1) ◽  
pp. 48-54 ◽  
Author(s):  
J. Spitznagel ◽  
E. Kraig ◽  
D. Kolodrubetz

Actinobacillus actinomycetemcomitans ( A.a.) can produce a potent leukotoxin that is thought to be involved in evasion of the host immune response. In order to understand the role of A.a. and its leukotoxin in the initiation and progression of periodontal disease, it is important determine how the expression of A.a. virulence factors might be regulated by the local periodontal micro-environment. To facilitate the measurement of leukotoxin levels, a leukotoxin-β-galactosidase gene fusion was constructed and recombined into the chromosome of A.a. strain JP2 at the leukotoxin locus. The resulting strain, AAM17, produces β-galactosidase under control of the leukotoxin promoter. It also produces leukotoxin, since integration of the gene fusion into the chromosome was designed to produce a duplication of the leukotoxin gene. This strain was used to measure the change in leukotoxin level in response to alterations in two environmental signals: iron concentration and oxygen tension. When AAM17 was grown in iron-limited media that did not alter growth rate but did increase the levels of other iron-regulated proteins, the levels of the leukotoxin-p-galactosidase were similar to those found in AAM17 grown in iron-replete media. These results were confirmed in strains AAM17 and JP2 by leukotoxicity assays and RNA blots. Aerobic growth of AAM17 resulted in a three-fold decrease in leukotoxin β-galactosidase activity compared with anaerobically grown cells. These results indicate that the A.a. leukotoxin is regulated by some of the environmental signals that may vary in the gingival crevice.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Qingwen Zhang ◽  
Xinru Jiang ◽  
Weigang He ◽  
Kailin Wei ◽  
Jinxia Sun ◽  
...  

Mycobacterium tuberculosis(Mtb) remains a significant menace to global health as it induces granulomatous lung lesions and systemic inflammatory responses during active tuberculosis (TB). Micheliolide (MCL), a sesquiterpene lactone, was recently reported to have a function of relieving LPS-induced inflammatory response, but the regulative role of MCL on the immunopathology of TB still remains unknown. In this experiment, we examined the inhibitory effect of MCL on Mtb-induced inflammatory response in mouse macrophage-like cell line Raw264.7 by downregulating the activation of nuclear factor kappa B (NF-κB) and NLRP3 inflammasome. Evidences showed that MCL decreased the secretion of Mtb-induced inflammatory cytokines (IL-1βand TNF-α) in a dose-dependent manner. Meanwhile, MCL dramatically suppressed Mtb-induced activation of iNOS and COX2 as well as subsequent production of NO. Furthermore, MCL inhibited Mtb-induced phosphorylation of Akt (Ser 473) in Raw264.7. According to our results, MCL plays an important role in modulating Mtb-induced inflammatory response through PI3K/Akt/NF-κB pathway and subsequently downregulating the activation of NLRP3 inflammasome. Therefore, MCL may represent as a potential drug candidate in the adjuvant treatment of TB by regulating host immune response.


2017 ◽  
Vol 117 (03) ◽  
pp. 570-579 ◽  
Author(s):  
Bin Pan ◽  
Xiangmin Wang ◽  
Shinsuke Kojima ◽  
Chie Nishioka ◽  
Akihito Yokoyama ◽  
...  

SummaryThrombomodulin (TM) exerts cytoprotection via the fifth region of epidermal growth factor (EGF)-like domain of TM (TME5) by interacting with G-protein coupled receptor 15 (GPR15) expressed on cell surface of vascular endothelial cells. TM is also implied to mediate anti-inflammatory functions by unknown mechanism. By applying a lipopolysaccharide (LPS)-induced murine sepsis model, we assessed the role of TME5 in septic inflammation and coagulation. We found that TME5 treatment protected mice in association with ameliorating inflammation and coagulopathy in LPS-induced sepsis. Further study confirmed that TME5 bound GPR15 in vitro. Knock out of GPR15 abolished protective role of TME5 in sepsis model. GPR15 mediated anti-inflammatory function of TME5 through suppression of phosphorylation of IκBα, nuclear translocation of NF-κB and release of pro-inflammatory cytokines in macro-phages (Macs). Knock out of GPR15 resulted in dysregulated immune response of Macs, characterised by excessive expression of pro-inflammatory genes and failing to limit immune response. This study indicates that TME5 exerts anti-inflammatory function through inhibition of NF-κB in a GPR15-dependent manner. The use of TME5 may be a potential therapeutic option for treatment of sepsis.Supplementary Material to this article is available online at www.thrombosis-online.com.


2020 ◽  
pp. 49-57
Author(s):  
S. V. Orlova ◽  
E. A. Nikitina ◽  
L. I. Karushina ◽  
Yu. A. Pigaryova ◽  
O. E. Pronina

Vitamin A (retinol) is one of the key elements for regulating the immune response and controls the division and differentiation of epithelial cells of the mucous membranes of the bronchopulmonary system, gastrointestinal tract, urinary tract, eyes, etc. Its significance in the context of the COVID‑19 pandemic is difficult to overestimate. However, a number of studies conducted in the past have associated the additional intake of vitamin A with an increased risk of developing cancer, as a result of which vitamin A was practically excluded from therapeutic practice in developed countries. Our review highlights the role of vitamin A in maintaining human health and the latest data on its effect on the development mechanisms of somatic pathology.


Sign in / Sign up

Export Citation Format

Share Document