scholarly journals Evaluation of Sulfide Inclusions before and after Deformation of Steel by Using the Electrolytic Extraction Method

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 543
Author(s):  
Shuo Guo ◽  
Andrey Vladimirovich Karasev ◽  
Anders Tilliander ◽  
Pär Göran Jönsson

The characteristics of elongated MnS have a critical effect on fatigue anisotropy and all mechanical anisotropies. A comparative investigation of nonmetallic inclusions in both stainless steels and tool steels has been carried out in this study. The inclusion characteristics were investigated using electrolytic extraction (EE) followed by scanning electron microscopy combined with energy-dispersive spectroscopy (SEM-EDS). Overall, three types of MnS inclusions (type I (regular), type II (irregular) and type III (Rod)) were found in tool steels in as-cast samples, which had not been heat-treated. Furthermore, three types of MnS inclusions (Rod-like sulfide (RS), Plate-like sulfide (PS) and Oxysulfide (OS)) were found in samples taken after rolling. Based on the breakability of the elongated MnS, three types of inclusions, Type UU, UB and BB, where U represents the undamaged or unbroken edge of an inclusion and B represents the fragment or broken edge of an inclusion, were studied in both stainless steels and tool steels both before and after additional heat treatment. The effect of heat treatment and dissolving the metal layer during the EE process is also discussed. The results show that both processes have a limited effect on the breakability of inclusions in steels with carbon contents <0.42 mass%.

2012 ◽  
Vol 2012 (CICMT) ◽  
pp. 000603-000605
Author(s):  
Silke Bramlage ◽  
Klaus-Jürgen Wolter

Eight different PZT (lead zirconate titanate) materials (Navy Type I and II) with Curie temperatures between 250 °C and 350 °C were subjected to a standard vapor phase soldering process with a peak temperature of 240 °C for three cycles. As indicators for the depolarization, the piezoelectric charge coefficient (d33) and the coupling coefficient (keff) were measured both before and after each heat treatment. Our studies demonstrate reductions in piezoelectric properties between 5% and 20%, depending on the Curie temperature of the corresponding material. The effects of the second and third cycle were minimal. The drop in performance, especially for materials with higher Curie temperatures, is moderate, and can be accounted for in the design of the device. Thus batch soldering processes become a viable alternative to selective soldering.


2010 ◽  
Vol 6 (3) ◽  
pp. 373-382
Author(s):  
Ali Nazari ◽  
Shadi Riahi

PurposeThe aims of this study is to analyze failure of two types of high‐strength low‐alloy (HSLA) steels which are used in wheel bolts 10.9 grade, boron steel and chromium‐molybdenum steel, before and after heat treatment.Design/methodology/approachThe optimum heat treatment to obtain the best tensile behavior was determined and Charpy impact and Rockwell hardness tests were performed on the two steel types before and after the optimum heat treating.FindingsFractographic studies show a ductile fracture for heat‐treated boron steel while indicate a semi‐brittle fracture for heat‐treated chromium‐molybdenum steel. Formation of a small boron carbide amount during heat treating of boron steel results in increment the bolt's tensile strength while the ductility did not changed significantly. In the other hand, formation of chromium and molybdenum carbides during heat treating of chromium‐molybdenum steel increased the bolt's tensile strength with a considerable reduction in the final ductility.Originality/valueThis paper evaluates failure analysis of HSLA wheel bolt steels and compares their microstructure before and after the loading regime.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 863 ◽  
Author(s):  
Yan Wu ◽  
Yajing Wang ◽  
Feng Yang ◽  
Jing Wang ◽  
Xuehua Wang

In this paper, Moso bamboo (Phyllostachys heterocycle) before and after heat treatment were used as raw materials to prepare transparent bamboo (TB). In an acidic environment, the lignin contained in the bamboo material was removed to obtain a bamboo template, and an epoxy resin similar to the cellulose refractive index was used for vacuum impregnation into the bamboo template to obtain a transparent bamboo material. The purpose of this study was to compare the physical and chemical properties of TB and original bamboo and the differences between TBs before and after heat treatment, taken from different parts of bamboo, in order to explore the performance advantages and disadvantages of TB as a new material. The Fourier transform infrared spectroscopy analysis (FTIR), scanning electron microscope testing (SEM), three elements analysis, light transmittance testing, and mechanical strength testing were used to study the molecular composition, microstructure, chemical composition, light transmittance, and tensile strength of the TB samples. The results showed that the lignin content of the delignified bamboo templates was greatly reduced. In addition, the SEM images showed that a large amount of epoxy resin (type E51 and type B210 curing agent) was covered on the cross-section surface and pores of the TB samples. The FTIR showed that the epoxy molecular groups appeared on the TB, and the delignified bamboo template and the resin had a good synergy effect. According to the light transmittance testing, the original bamboo samples hardly contained light transmittance under visible light. The transmittance of transparent inner bamboo (TIB) and transparent heat-treated inner bamboo (THIB) could reach about 11%, and the transmittance of transparent outer bamboo (TOB) and transparent heat-treated outer bamboo (THOB) was about 2%. The light transmittance had been significantly improved when compared with the original bamboo samples. The transmittances of the TB samples before and after heat treatment in different parts of bamboo were different. In the visible light irradiation range, the light transmittances of TB samples were as follows: TIB > THIB and THOB > TOB. Meanwhile, the tensile strength of TB was reduced, especially for TOB and THOB. In addition, TB has a wide range of raw materials, and the preparation process is environmentally friendly. It can be used for decorative materials in homes, buildings, etc., and has a great application potential.


2013 ◽  
Vol 747-748 ◽  
pp. 111-114
Author(s):  
Lin Song ◽  
Xiang Jun Xu ◽  
Jun Pin Lin ◽  
Lai Qi Zhang

Effects of annealing treatment on microstructure and the compressive properties of hot-worked Ti-45Al-8Nb-(W, B, Y) alloy were investigated. Microstructure of the extrusion plus multi-step forging pancake before and after heat treatment was analyzed by SEM and TEM, respectively. The annealing was conducted by holding samples at 1100°C for 2hrs, and followed by air cooling and furnace cooling. The mechanical properties were measured by Instron test machine. The microstructure evolution during compressive deformation was analyzed by TEM. The results showed that after the annealing the microstructure change could not be observed under SEM but can be observed under TEM. Many dislocation clusters were removed by heat treatment. The heat treated samples had similar compression behaviors with the pancake. TEM investigation showed that the numerous twin intersections occured in γ matrix during compression. The twin spaces tended to decrease as the deformation and the intersection increasing.


2012 ◽  
Vol 192-193 ◽  
pp. 556-561 ◽  
Author(s):  
Qiang Zhu ◽  
Stephen Midson ◽  
Chang Wei Ming ◽  
Helen V. Atkinson

Commercial semi-solid cast impellers are produced from Al-Si-Cu alloys heat treated to the T6 temper. The study described in this paper involved the identification of casting and heat treatment parameters to produce semi-solid processed turbocharger impellers from a silicon-free, higher strength 201 alloy. Casting parameters were identified which minimized hot tearing in the alloy 201 impellers. A series of heat treatment studies were performed to determine optimum heat treatment parameters. The T71 temper was identified as the preferred heat treatment condition to produce high strength as well as superior elongation. The results from mechanical property measurements conducted on the T71 heat treated impellers are reported. Optical and scanning electron microscopy (SEM) were also used to characterize the microstructure of alloy 201 impellers before and after heat treatment, and representative microstructures are presented.


2010 ◽  
Vol 457 ◽  
pp. 84-89 ◽  
Author(s):  
Arash Inanlou ◽  
S. Hossein Seyedein ◽  
M. Reza Aboutalebi

High chromium cast iron samples of 14% Cr and 24% Cr were produced in sand and permanent mold using semi-solid casting process. A series of experiments were carried out to clarify the effect of copper cooling plate and mold cooling rate on microstructure, particularly morphology and sphericity of primary austenite, hardness and heat treatment cycles. Results show that for 14% Cr and 24% cast irons casting at 10 and 15 degrees of inclined plate result in better sphericity and distribution of primary austenite and carbides. Moreover hardness comparison of both semi-solid iron alloys using copper cooling plate at of this special morphologies resulted from cooling plate investigated by making them heat treat at 1050 centigrade °C for 1 and 2 hours. Hardness results show both heat treated 14 and 24% Cr alloy in 1 hours have hardness comparable with those alloys traditionally cast optimum angles with respect to conventional casting show higher hardness in every condition. Effect but heat treated in 2 hours. Finally X-Ray diffraction pattern taken from specimens before and after heat treatment confirmed with observed phases in optical microscopy before and after heat treatment.


Holzforschung ◽  
2003 ◽  
Vol 57 (3) ◽  
pp. 301-307 ◽  
Author(s):  
M. Pétrissans ◽  
P. Gérardin ◽  
I. El bakali ◽  
M. Serraj

Summary The aim of this work was to study the wettability and chemical composition of heat-treated wood. Heat treatment was performed at 240°C under inert atmosphere on four European wood species (pine, spruce, beech and poplar). Contact angle measurements before and after treatment indicated a significant increase in wood hydrophobicity. Advancing contact angles of a water drop were in all cases systematically higher for heat-treated than for untreated wood. Chemical modifications of wood after heat treatment were investigated using FTIR and 13C NMR analysis. FTIR spectra indicated little structural change which could be attributed either to carbon-carbon double bond formation or to adsorbed water. NMR spectra also revealed little chemical change except for the degree of cellulose crystallinity which was considerably higher in heat-treated wood and could explain the higher contact angles.


2017 ◽  
Vol 1143 ◽  
pp. 26-31
Author(s):  
Lucica Balint ◽  
Gina Genoveva Istrate

Research has shown the relationship among hardness, usage and corrosion resistance Ni-P-Al2O3 composite coatings on steel support heat treated. The electroless strips were heat treated at 200°C, 300°C, 400°C, 500°C and 600°C. Further studies on corrosion, hardness and usage revealed changes in properties, compared to the initial state, both on the strips coated with Ni-P and the ones coated with Ni-P-Al2O3 composite. The samples have been studied before and after the heat treatment via Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray Analysis (EDX) and X-Ray Diffraction (XRD). The results show that untreated Ni-P layers exhibit strong corrosion resistance, while hardness and usage increase with heat treatment temperature, with a peak at 400 °C. Using suspended particles co-deposition, led to new types of layers, some with excellent hardness and usage properties. Corrosion resistance increase with heat treatment. Coating layers can be adjusted to the desired characteristics, by selecting proper parameters for the expected specific results.


2014 ◽  
Vol 7 (1) ◽  
pp. 109-118
Author(s):  
Jenan Mohammed Nagie

This paper is aimed to study the effect of cooling rate on mechanical properties of Steel 35. Specimens prepared to apply tensile, torsion, impact and hardness tests.Many prepared specimens heat treated at (850ºC) for one hour and subsequently were cooled by three different media [Water-Air-furnace] to show the effect of Medias cooling rate on mechanical properties. Microstructures of all specimens examined before and after heat treatment by an optical microscopy.To figure the phases obtained after heat treatment and its effect on the mechanical properties Experimental results have shown that the microstructure of steel can be changed and significantly improved by varying line cooling rate thus, improving one property will effect on the others because of the relationship between all properties.In water media tensile, torsion and hardness improved while impact results reduced. Air media contributed in improving most of the mechanical properties because of grain size homogeneity. At furnace media ductility and impact improved


2011 ◽  
Vol 50 (No. 4) ◽  
pp. 169-174 ◽  
Author(s):  
B. Písaříková ◽  
S. Kráčmar ◽  
I. Herzig

Amino acid content before and after heat treatment was assessed in grain of six selected amaranth varieties and four species: Amaranthus cruentus, A. hypochondriacus, A. caudatus and A. hybridus, cultivated in the Czech Republic. High content of Lys and Arg was detected in both heat treated and untreated grains, as well as satisfactory content of Cys and lower levels of Met, Val, Ile and Leu. The latter three amino acids appear as limiting. Chemical scores of essential amino acids and essential amino acid index (EAAI) were determined. EAAI value of 90.4% shows the favourable nutritional quality of amaranth protein, which is almost comparable with egg protein. Heat treatment by popping at 170 to 190&deg;C for 30 s resulted in decreased EAAI to 85.4%. Of the essential amino acids under study, Val and Leu contents decreased significantly (P &lt; 0.05). The relatively high content of essential amino acids in amaranth grain predetermines its use as a substitution of meat-and-bone meals. &nbsp;


Sign in / Sign up

Export Citation Format

Share Document