scholarly journals Rheo-Diecasting of Wrought Magnesium AZ31 Alloy and the Effect of Injection Velocity on Microstructure and Tensile Strength

Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 793 ◽  
Author(s):  
Zelin Jin ◽  
Bo Xing ◽  
Chengli Tang ◽  
Junyan Feng ◽  
Na Su ◽  
...  

Wrought Mg AZ31 alloy was near-net-shaped by semisolid rheo-diecasting. Parts with 42% and 61% solid fraction were produced at different injection velocities. The impact of injection velocity on the microstructure and the tensile strength of samples have been investigated. Results indicated that the shape factor and the particle size of primary α-Mg in the microstructure decreased with the increase of injection velocity, and the morphology of both secondary α-Mg and eutectic α-Mg + Mg17Al12 mixture were refined with the increase of injection velocity. The surface liquid segregation in the sample closely relates to the injection velocity and the solid fraction of slurries, and it decreased with the increase of injection velocity and the decrease of the solid fraction. Cold shut, crack, and gas porosity were the main internal defects that rely on the injection velocity. The tensile strength of the samples decreased with the increase of injection velocity, and the best value of 201 and 192 MPa was obtained at 0.5 m/s and 1 m/s for the sample with the solid fraction of 0.61 and 0.42, respectively. This work demonstrated a predominant effect of internal defects on the property of the rheo-diecasting (RDC) product than the microstructure; thus, defect reduction should be preferentially considered in the optimization of the RDC process.

2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1103
Author(s):  
Sara Sarraj ◽  
Małgorzata Szymiczek ◽  
Tomasz Machoczek ◽  
Maciej Mrówka

Eco-friendly composites are proposed to substitute commonly available polymers. Currently, wood–plastic composites and natural fiber-reinforced composites are gaining growing recognition in the industry, being mostly on the thermoplastic matrix. However, little data are available about the possibility of producing biocomposites on a silicone matrix. This study focused on assessing selected organic fillers’ impact (ground coffee waste (GCW), walnut shell (WS), brewers’ spent grains (BSG), pistachio shell (PS), and chestnut (CH)) on the physicochemical and mechanical properties of silicone-based materials. Density, hardness, rebound resilience, and static tensile strength of the obtained composites were tested, as well as the effect of accelerated aging under artificial seawater conditions. The results revealed changes in the material’s properties (minimal density changes, hardness variation, overall decreasing resilience, and decreased tensile strength properties). The aging test revealed certain bioactivities of the obtained composites. The degree of material degradation was assessed on the basis of the strength characteristics and visual observation. The investigation carried out indicated the impact of the filler’s type, chemical composition, and grain size on the obtained materials’ properties and shed light on the possibility of acquiring ecological silicone-based materials.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 779
Author(s):  
Mohamed Gomah ◽  
Guichen Li ◽  
Salah Bader ◽  
Mohamed Elkarmoty ◽  
Mohamed Ismael

The awareness of the impact of high temperatures on rock properties is essential to the design of deep geotechnical applications. The purpose of this research is to assess the influence of heating and cooling treatments on the physical and mechanical properties of Egyptian granodiorite as a degrading factor. The samples were heated to various temperatures (200, 400, 600, and 800 °C) and then cooled at different rates, either slowly cooled in the oven and air or quickly cooled in water. The porosity, water absorption, P-wave velocity, tensile strength, failure mode, and associated microstructural alterations due to thermal effect have been studied. The study revealed that the granodiorite has a slight drop in tensile strength, up to 400 °C, for slow cooling routes and that most of the physical attributes are comparable to natural rock. Despite this, granodiorite thermal deterioration is substantially higher for quick cooling than for slow cooling. Between 400:600 °C is ‘the transitional stage’, where the physical and mechanical characteristics degraded exponentially for all cooling pathways. Independent of the cooling method, the granodiorite showed a ductile failure mode associated with reduced peak tensile strengths. Additionally, the microstructure altered from predominantly intergranular cracking to more trans-granular cracking at 600 °C. The integrity of the granodiorite structure was compromised at 800 °C, the physical parameters deteriorated, and the rock tensile strength was negligible. In this research, the temperatures of 400, 600, and 800 °C were remarked to be typical of three divergent phases of granodiorite mechanical and physical properties evolution. Furthermore, 400 °C could be considered as the threshold limit for Egyptian granodiorite physical and mechanical properties for typical thermal underground applications.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 554
Author(s):  
Marta C. Coelho ◽  
Tânia B. Ribeiro ◽  
Carla Oliveira ◽  
Patricia Batista ◽  
Pedro Castro ◽  
...  

In times of pandemic and when sustainability is in vogue, the use of byproducts, such as fiber-rich tomato byproducts, can be an asset. There are still no studies on the impact of extraction methodologies and the gastrointestinal tract action on bioactive properties. Thus, this study used a solid fraction obtained after the conventional method (SFCONV) and a solid fraction after the ohmic method (SFOH) to analyze the effect of the gastrointestinal tract on bioactive compounds (BC) and bioactivities. Results showed that the SFOH presents higher total fiber than SFCONV samples, 62.47 ± 1.24–59.06 ± 0.67 g/100 g DW, respectively. Both flours present high amounts of resistant protein, representing between 11 and 16% of insoluble dietary fiber. Furthermore, concerning the total and bound phenolic compounds, the related antioxidant activity measured by 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical cation decolorization assay presented significantly higher values for SFCONV than SFOH samples (p < 0.05). The main phenolic compounds identified in the two flours were gallic acid, rutin, and p-coumaric acid, and carotenoids were lycopene, phytofluene, and lutein, all known as health promoters. Despite the higher initial values of SFCONV polyphenols and carotenoids, these BCs’ OH flours were more bioaccessible and presented more antioxidant capacity than SFCONV flours, throughout the simulated gastrointestinal tract. These results confirm the potential of ohmic heating to modify the bioaccessibility of tomato BC, enhancing their concentrations and improving their antioxidant capacity.


2015 ◽  
Vol 825-826 ◽  
pp. 369-376 ◽  
Author(s):  
Robert Prussak ◽  
Daniel Stefaniak ◽  
Christian Hühne ◽  
Michael Sinapius

This paper focuses on the reduction of process-related thermal residual stress in fiber metal laminates and its impact on the mechanical properties. Different modifications during fabrication of co-cure bonded steel/carbon epoxy composite hybrid structures were investigated. Specific examinations are conducted on UD-CFRP-Steel specimens, modifying temperature, pressure or using a thermal expansion clamp during manufacturing. The impact of these parameters is then measured on the deflection of asymmetrical specimens or due yield-strength measurements of symmetrical specimens. The tensile strength is recorded to investigate the effect of thermal residual stress on the mechanical properties. Impact tests are performed to determine the influence on resulting damage areas at specific impact energies. The experiments revealed that the investigated modifications during processing of UD-CFRP-Steel specimens can significantly lower the thermal residual stress and thereby improve the tensile strength.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Haoliang Huang ◽  
Guang Ye

In this research, self-healing due to further hydration of unhydrated cement particles is taken as an example for investigating the effects of capsules on the self-healing efficiency and mechanical properties of cementitious materials. The efficiency of supply of water by using capsules as a function of capsule dosages and sizes was determined numerically. By knowing the amount of water supplied via capsules, the efficiency of self-healing due to further hydration of unhydrated cement was quantified. In addition, the impact of capsules on mechanical properties was investigated numerically. The amount of released water increases with the dosage of capsules at different slops as the size of capsules varies. Concerning the best efficiency of self-healing, the optimizing size of capsules is 6.5 mm for capsule dosages of 3%, 5%, and 7%, respectively. Both elastic modulus and tensile strength of cementitious materials decrease with the increase of capsule. The decreasing tendency of tensile strength is larger than that of elastic modulus. However, it was found that the increase of positive effect (the capacity of inducing self-healing) of capsules is larger than that of negative effects (decreasing mechanical properties) when the dosage of capsules increases.


1985 ◽  
Vol 64 ◽  
Author(s):  
Surendra P. Shah

ABSTRACTDespite its extensive use, low tensile strength has been recognized as one of the major drawbacks of concrete. Although one has learned to avoid exposing concrete structures to adverse static tensile load, these cannot be shielded from short duration dynamic tensile stresses. Such loads originate from sources such as impact from missiles and projectiles, wind gusts, earthquakes and machine vibrations. The need to accurately predict the structural response and reserve capacity under such loading has led to an interest in the mechanical properties of the component materials at high rates of straining.One method to improve the resistance of concrete when subjected to impact and/or impulsive loading is by the incorporation of randomly distributed short fibers. Concrete (or Mortar) so reinforced is termed fiber reinforced concrete (FRC). Moderate increase in tensile strength and significant increases in energy absorption (toughness or impact-resistance) have been reported by several investigators in static tests on concrete reinforced with randomly distributed short steel fibers. A theoretical model to predict fracture toughness of FRC is proposed. This model is based on the concept of nonlinear elastic fracture mechanics.As yet no standard test methods are available to quantify the impact resistance of such composites, although several investigators have employed a variety of tests including drop weight, swinging pendulums and the detonation of explosives. These tests though useful in ascertaining the relative merits of different composites do not yield basic material characteristics which can be used for design.The author has recently developed an instrumented Charpy type of impact test to obtain basic information such as load-deflection relationship, fracture toughness, crack velocity and load-strain history during an impact event. From this information, a damage based constitutive model was proposed. Relative improvements in performance due to the addition of fibers as observed in the instrumented tests are also compared with other conventional methods.


2015 ◽  
Vol 35 (12) ◽  
pp. 1688-1709 ◽  
Author(s):  
Xun Li ◽  
Qun Wu ◽  
Clyde W. Holsapple

Purpose – Best-value supply chains characterized by agility, adaptability, and alignment, have become a crucial strategic means for firms to create and sustain competitive advantage in today’s turbulent environment. The purpose of this paper is to investigate linkage between best-value supply chains and firms’ competitive performance. Design/methodology/approach – In Study 1, survey data from 76 firms is used to test the impact of the three qualities of best-value supply chains on firms’ competitive performance. In Study 2, to test if a firm’s competitive advantage can be sustained through building best-value supply chains, a long-run performance analysis is conducted, which is based on a stock portfolio of firms identified from the American Marketing Association’s annual list of “Supply Chain Top 25.” Findings – The results of Study 1 indicate that the three qualities of best-value supply chains are positively related to firms’ competitive performance. The results of Study 2 show that firms having best-value supply chains generate significant and positive abnormal returns for shareholders over time. Originality/value – This is a multiple-method research, providing two-level empirical evidence to the investigation of theoretical linkage between best-value supply chains and firms’ competitive performance.


Sign in / Sign up

Export Citation Format

Share Document