scholarly journals Metabolic Fluctuations in the Human Stool Obtained from Blastocystis Carriers and Non-Carriers

Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 883
Author(s):  
Emma L. Betts ◽  
Jamie M. Newton ◽  
Gary S. Thompson ◽  
Fakhriddin Sarzhanov ◽  
Vasana Jinatham ◽  
...  

Blastocystis is an obligate anaerobic microbial eukaryote that frequently inhabits the gastrointestinal tract. Despite this prevalence, very little is known about the extent of its genetic diversity, pathogenicity, and interaction with the rest of the microbiome and its host. Although the organism is morphologically static, it has no less than 28 genetically distinct subtypes (STs). Reports on the pathogenicity of Blastocystis are conflicting. The association between Blastocystis and intestinal bacterial communities is being increasingly explored. Nonetheless, similar investigations extending to the metabolome are non-existent.Using established NMR metabolomics protocols in 149 faecal samples from individuals from South Korea (n = 38), Thailand (n = 44) and Turkey (n = 69), we have provided a snapshot of the core metabolic compounds present in human stools with (B+) and without (B−) Blastocystis. Samples included hosts with gastrointestinal symptoms and asymptomatics. A total of nine, 62 and 98 significant metabolites were associated with Blastocystis carriage in the South Korean, Thai and Turkish sample sets respectively, with a number of metabolites increased in colonised groups. The metabolic profiles of B+ and B− samples from all countries were distinct and grouped separately in the partial least squares-discriminant analysis (PLS-DA). Typical inflammation-related metabolites negatively associated with Blastocystis positive samples. This data will assist in directing future studies underlying the involvement of Blastocystis in physiological processes of both the gut microbiome and the host. Future studies using metabolome and microbiome data along with host physiology and immune responses information will contribute significantly towards elucidating the role of Blastocystis in health and disease.

2021 ◽  
Vol 22 (12) ◽  
pp. 6403
Author(s):  
Md Saidur Rahman ◽  
Khandkar Shaharina Hossain ◽  
Sharnali Das ◽  
Sushmita Kundu ◽  
Elikanah Olusayo Adegoke ◽  
...  

Insulin is a polypeptide hormone mainly secreted by β cells in the islets of Langerhans of the pancreas. The hormone potentially coordinates with glucagon to modulate blood glucose levels; insulin acts via an anabolic pathway, while glucagon performs catabolic functions. Insulin regulates glucose levels in the bloodstream and induces glucose storage in the liver, muscles, and adipose tissue, resulting in overall weight gain. The modulation of a wide range of physiological processes by insulin makes its synthesis and levels critical in the onset and progression of several chronic diseases. Although clinical and basic research has made significant progress in understanding the role of insulin in several pathophysiological processes, many aspects of these functions have yet to be elucidated. This review provides an update on insulin secretion and regulation, and its physiological roles and functions in different organs and cells, and implications to overall health. We cast light on recent advances in insulin-signaling targeted therapies, the protective effects of insulin signaling activators against disease, and recommendations and directions for future research.


Author(s):  
Н.М. Геворкян ◽  
Н.В. Тишевская

Цель обзора - анализ клеточной основы патогенеза различных заболеваний в свете регуляторной роли Т-лимфоцитов. Рассматривается роль поликлонального многообразия популяции Т-лимфоцитов, особых свойств этих клеток-представителей гомеостатической системы организма в физиологических процессах в норме и при патологии. Указаны перспективы терапевтического и профилактического воздействий, связанные с использованием суммарных РНК нормальных лимфоидных клеток аллогенной и ксеногенной природы. Указана также возможность создания с помощью лимфоцитарных суммарных РНК адекватных моделей заболеваний человека на пути к развитию персонифицированной медицины. This review provides an analysis of the cellular basis of the pathogenesis of various diseases in the light of the regulatory role of T-lymphocytes. The role of the polyclonal diversity of the population of T-lymphocytes, the special properties of these cells-representatives of the homeostatic system of the body, in physiological processes in health and disease is considered. Prospects for therapeutic and prophylactic effects associated with the use of total RNA of normal lymphoid cells of allogeneic and xenogenic origin are indicated. The possibility of creating, using lymphocytic total RNA, adequate models of human diseases for the development of personalized medicine is also indicated.


2001 ◽  
Vol 82 (2) ◽  
pp. 149-151
Author(s):  
V. A. Anokhin ◽  
U. A. Tyurin

Normal intestinal microflora includes tens and hundreds of species, and their total number in an adult reaches 1014 microorganisms per 1 g of feces [7]. The basis of normal human microflora are obligate-anaerobic bifidobacteria, lactobacilli and bacteroids, the number of which is several orders of magnitude higher than the content of aerobic intestinal bacteria. In recent years, representatives of other anaerobic groups - Anaerovibrio, Butyrivibrio - have been found in the normal intestinal microflora, the biological and clinical significance of which is under study [7].


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7224 ◽  
Author(s):  
Héla Mkaouar ◽  
Nizar Akermi ◽  
Aicha Kriaa ◽  
Anne-Laure Abraham ◽  
Amin Jablaoui ◽  
...  

Serine Protease Inhibitors (Serpins) control tightly regulated physiological processes and their dysfunction is associated to various diseases. Thus, increasing interest is given to these proteins as new therapeutic targets. Several studies provided functional and structural data about human serpins. By comparison, only little knowledge regarding bacterial serpins exists. Through the emergence of metagenomic studies, many bacterial serpins were identified from numerous ecological niches including the human gut microbiota. The origin, distribution and function of these proteins remain to be established. In this report, we shed light on the key role of human and bacterial serpins in health and disease. Moreover, we analyze their function, phylogeny and ecological distribution. This review highlights the potential use of bacterial serpins to set out new therapeutic approaches.


2020 ◽  
Vol 76 (1) ◽  
pp. 16-29 ◽  
Author(s):  
Navya Bezawada ◽  
Tze Hui Phang ◽  
Georgina L. Hold ◽  
Richard Hansen

Introduction: Differences in microbiota composition in children with autism spectrum disorder (ASD) compared to unaffected siblings and healthy controls have been reported in various studies. This study aims to systematically review the existing literature concerning the role of the gut microbiota in ASD. Methods: An extensive literature search was conducted using MEDLINE and EMBASE databases to identify studies (January 1966 through July 2019). Results: A total of 28 papers were included. The studies ranged from 12 to 104 participants who were aged between 2 and 18 years from various geographical areas. Majority of studies included faecal samples; however, 4 studies examined mucosal biopsies from different sites. The heterogeneity in ASD diagnostic methodology, gut site sampled and laboratory methods used made meta-analysis inappropriate. Species reported to be significantly higher in abundance in autistic children included Clostridium, Sutterella, Desulfovibrio and Lactobacillus. The findings are however inconsistent across studies. In addition, ­potential confounding effects of antimicrobial use, gastrointestinal symptoms and diet on the gut microbiota are unclear due to generally poor assessment of these factors. Conclusion: It is clear that the gut microbiota is altered in ASD, although further exploration is needed on whether this is a cause or an effect of the condition.


2012 ◽  
Vol 92 (4) ◽  
pp. 1865-1913 ◽  
Author(s):  
Albrecht Schwab ◽  
Anke Fabian ◽  
Peter J. Hanley ◽  
Christian Stock

Cell motility is central to tissue homeostasis in health and disease, and there is hardly any cell in the body that is not motile at a given point in its life cycle. Important physiological processes intimately related to the ability of the respective cells to migrate include embryogenesis, immune defense, angiogenesis, and wound healing. On the other side, migration is associated with life-threatening pathologies such as tumor metastases and atherosclerosis. Research from the last ∼15 years revealed that ion channels and transporters are indispensable components of the cellular migration apparatus. After presenting general principles by which transport proteins affect cell migration, we will discuss systematically the role of channels and transporters involved in cell migration.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ireti Eni-Aganga ◽  
Zeljka Miletic Lanaghan ◽  
Muthukumar Balasubramaniam ◽  
Chandravanu Dash ◽  
Jui Pandhare

Prolidase (peptidase D), encoded by the PEPD gene, is a ubiquitously expressed cytosolic metalloproteinase, the only enzyme capable of cleaving imidodipeptides containing C-terminal proline or hydroxyproline. Prolidase catalyzes the rate-limiting step during collagen recycling and is essential in protein metabolism, collagen turnover, and matrix remodeling. Prolidase, therefore plays a crucial role in several physiological processes such as wound healing, inflammation, angiogenesis, cell proliferation, and carcinogenesis. Accordingly, mutations leading to loss of prolidase catalytic activity result in prolidase deficiency a rare autosomal recessive metabolic disorder characterized by defective wound healing. In addition, alterations in prolidase enzyme activity have been documented in numerous pathological conditions, making prolidase a useful biochemical marker to measure disease severity. Furthermore, recent studies underscore the importance of a non-enzymatic role of prolidase in cell regulation and infectious disease. This review aims to provide comprehensive information on prolidase, from its discovery to its role in health and disease, while addressing the current knowledge gaps.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2050
Author(s):  
Marco Sisignano ◽  
Michael J. M. Fischer ◽  
Gerd Geisslinger

The group of proton-sensing G-protein coupled receptors (GPCRs) consists of the four receptors GPR4, TDAG8 (GPR65), OGR1 (GPR68), and G2A (GPR132). These receptors are cellular sensors of acidification, a property that has been attributed to the presence of crucial histidine residues. However, the pH detection varies considerably among the group of proton-sensing GPCRs and ranges from pH of 5.5 to 7.8. While the proton-sensing GPCRs were initially considered to detect acidic cellular environments in the context of inflammation, recent observations have expanded our knowledge about their physiological and pathophysiological functions and many additional individual and unique features have been discovered that suggest a more differentiated role of these receptors in health and disease. It is known that all four receptors contribute to different aspects of tumor biology, cardiovascular physiology, and asthma. However, apart from their overlapping functions, they seem to have individual properties, and recent publications identify potential roles of individual GPCRs in mechanosensation, intestinal inflammation, oncoimmunological interactions, hematopoiesis, as well as inflammatory and neuropathic pain. Here, we put together the knowledge about the biological functions and structural features of the four proton-sensing GPCRs and discuss the biological role of each of the four receptors individually. We explore all currently known pharmacological modulators of the four receptors and highlight potential use. Finally, we point out knowledge gaps in the biological and pharmacological context of proton-sensing GPCRs that should be addressed by future studies.


2018 ◽  
Vol 24 (20) ◽  
pp. 2303-2310 ◽  
Author(s):  
Imre Lorinc Szabo ◽  
Anna Kenyeres ◽  
Andrea Szegedi ◽  
Attila Gabor Szollosi

The skin is often introduced as the largest organ of the human body which – being uniquely exposed to external stress – faces several types of challenges, from physical, chemical, biological, and immunological origin. Therefore, the skin is also a site where inflammation, oxidative stress and cellular damage occurs regularly. Heme oxygenase (HO), primarily functioning in the catabolism of heme, is a very important cytoprotective enzyme that has antioxidant, anti-inflammatory and anti-apoptotic properties. Given the need for an enzyme with such a combination of attributes in the skin, it is not surprising that HO is involved in physiological processes as well as pathological conditions of the skin. In the recent decade, a huge effort was undertaken to identify treatments that modify HO-activity for the treatment of inflammatory or malignant skin diseases. In this review, we highlight the role of HO in the skin in physiological conditions as well as in relevant dermatological diseases such as atopic dermatitis, psoriasis and melanoma.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qing Fang ◽  
Na Liu ◽  
Binjie Zheng ◽  
Fei Guo ◽  
Xiangchang Zeng ◽  
...  

Diabetes is a highly prevalent metabolic disease that has emerged as a global challenge due to its increasing prevalence and lack of sustainable treatment. Diabetic kidney disease (DKD), which is one of the most frequent and severe microvascular complications of diabetes, is difficult to treat with contemporary glucose-lowering medications. The gut microbiota plays an important role in human health and disease, and its metabolites have both beneficial and harmful effects on vital physiological processes. In this review, we summarize the current findings regarding the role of gut microbial metabolites in the development and progression of DKD, which will help us better understand the possible mechanisms of DKD and explore potential therapeutic approaches for DKD.


Sign in / Sign up

Export Citation Format

Share Document