scholarly journals Sustainable and Selective Extraction of Lipids and Bioactive Compounds from Microalgae

Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4347 ◽  
Author(s):  
Ilaria Santoro ◽  
Monica Nardi ◽  
Cinzia Benincasa ◽  
Paola Costanzo ◽  
Girolamo Giordano ◽  
...  

The procedures for the extraction and separation of lipids and nutraceutics from microalgae using classic solvents have been frequently used over the years. However, these production methods usually require expensive and toxic solvents. Based on our studies involving the use of eco-sustainable methodologies and alternative solvents, we selected ethanol (EtOH) and cyclopentyl methyl ether (CPME) for extracting bio-oil and lipids from algae. Different percentages of EtOH in CPME favor the production of an oil rich in saturated fatty acids (SFA), useful to biofuel production or rich in bioactive compounds. The proposed method for obtaining an extract rich in saturated or unsaturated fatty acids from dry algal biomass is disclosed as eco-friendly and allows a good extraction yield. The method is compared both in extracted oil percentage yield and in extracted fatty acids selectivity to extraction by supercritical carbon dioxide (SC-CO2).

Author(s):  
Ilaria Santoro ◽  
Monica Nardi ◽  
Cinzia Benincasa ◽  
Paola Costanzo ◽  
Girolamo Giordano ◽  
...  

The procedures for the extraction and separation of lipids and nutraceutics from microalgae using classic solvents have been used many times. However, these production methods usually require expensive and toxic solvents. Based on our studies involving the use of eco-sustainable methodologies and alternative solvents, we select ethanol (EtOH) and cyclopentyl methyl ether (CPME) for extracting bio-oil and lipids from algae. Different percentage of EtOH in CPME favors the production of an oil rich of SFA useful to production biofuel or rich of compounds bioactive. The proposed method for obtain a rich extract of saturated or unsaturated fatty acids from dry algal biomass is disclosed is eco-friendly and allows a good extraction yield. The method is compared both in extracted oil percentage yield and in extracted fatty acids selectivity to extraction by supercritical carbon dioxide.


2019 ◽  
Vol 3 (1) ◽  
pp. 1
Author(s):  
Hafiluddin, Nurjanah, Tati Nurhayati

Abstract One of the commodities produced from the ocean that have a bioactive compounds is a sea slug (Discodoris sp.). That is very interesting to study mainly deals with the nature of both chemical and biochemical characteristics and their use for the field of food and health. The aims of this research was to determine the nutrient content of sea slug, determaine chemical content and determine antioxidant activity. The experiment was conducted with several stages: sample preparation, analysis of nutrient content, extraction bioactive compound, analysis of chemical content and antioxidant activity.  Sea slug from the island of Madura Pamekasan potential as a source of protein, fat, and minerals. Sea slug has esensial amino acids amount to 5.57% was dominated by leucin of 1.42%. Nonesensial amino acids amount to 6.54% wich was dominated by glutamic acid 2.19%.  Saturated fatty acids amounted to 27.53% of sea slug was dominated by palmitic (C16: 0) which was 13.36%. Unsaturated fatty acids amounted to 34.66%, which was dominated by the essential fatty acids linolenic (C18: 3, n-3) 20.91%. The highest yield of the crude extract was ethanol and contained alkaloid compounds, steroids, phenols, carbohydrates and reducing sugar compound. The meat of sea slug with ethanol solvent has an IC best 50 antioxidant activity at 441, 12 ppm.


Proceedings ◽  
2020 ◽  
Vol 51 (1) ◽  
pp. 6
Author(s):  
Aneta Sienkiewicz ◽  
Alicja Piotrowska-Niczyporuk ◽  
Andrzej Bajguz

Due to the increasing awareness of the depletion of fossil fuel resources and environmental issues, biodiesel as alternative fuel has become more and more attractive in the recent years. In this research, the characterization of herbal industry wastes as a potential feedstock for biodiesel production was carried out. There results of analytical identification of the fatty acid methyl esters (FAME) obtained in the transesterification reaction are presented. The reaction conditions were optimized, considering hexane ratio and catalyst concentration (methanol and KOH) for both steps. The FAME were extracted from the herbal samples by ultrasound-assisted extraction and subsequently were identified by gas chromatography-mass spectrometry (GC-MS) using single ion monitoring (SIM) method. Additionally, the selected properties of some bioesters were analyzed. This study determined the compounds which are ideal for fuel production. The unsaturated fatty acids were found in higher amounts than saturated fatty acids. Linoleic acid (C18:2n6c) was the major unsaturated fatty acid in herbal wastes, while palmitic acid (16:0) was the major saturated fatty acid. The application of the optimized method also revealed differences in the physical and chemical properties of isolated FAME mixtures compared to conventional diesel fuel. In this research work, for the first time, the possibilities of using the herbal industry wastes as a potential feedstock for biodiesel production are assessed.


2021 ◽  
Vol 2 (3) ◽  
pp. 34-37
Author(s):  
Abdelkrim Berroukche ◽  
Abdelkader Ammam ◽  
Mohamed Terras ◽  
Mohamed Amine Souidi ◽  
Mohamed Chibani ◽  
...  

Fatty acid and phytosterol vegetable oils were extracted from seeds of Cucurbita pepo (or pumpkin) into (v/v) hexane. The extract obtained was characterized by the contents of sterols, unsaturated and saturated fatty acids. The content of the bioactive compounds was determined by gas-chromatography FID method. Pumpkin seed oil extracts showed higher content of poly-unsaturated fatty acids (49.10%) than that from saturated fatty acids (28%). Sterols exhibited different molecules dominated by β-sistostérol (47%), Stigmastérol (23.6%) and campesterol (21.5%). Several peaks were present on the FID GC chromatogram of two extracts (fatty acids and sterols respectively). GC spectra confirmed the presence of the predominant bioactive compounds (PUFA, β-sistostérol , Stigmastérol and campesterol). The composition of pumpkin seed oil extract was characterized by FID-GC spectra with maximum at 280 nm.


2020 ◽  
Vol 20 (2) ◽  
pp. 38-40
Author(s):  
A. Levitsky ◽  
A. Lapinska ◽  
I. Selivanskaya

The article analyzes the role of essential polyunsaturated fatty acids (PUFA), especially omega-3 series in humans and animals. The biosynthesis of essential PUFA in humans and animals is very limited, so they must be consumed with food (feed). Тhe ratio of omega-3 and omega-6 PUFA is very important. Biomembranes of animal cells contain about 30% PUFA with a ratio of ω-6/ ω-3 1-2. As this ratio increases, the physicochemical properties of biomembranes and the functional activity of their receptors change. The regulatory function of essential PUFA is that in the body under the action of oxygenase enzymes (cyclooxygenase, lipoxygenase) are formed extremely active hormone-like substances (eicosanoids and docosanoids), which affect a number of physiological processes: inflammation, immunity, metabolism. Moreover, ω-6 PUFA form eicosanoids, which have pro-inflammatory, immunosuppressive properties, and ω-3 PUFAs form eicosanoids and docosanoids, which have anti-inflammatory and immunostimulatory properties. Deficiency of essential PUFA, and especially ω-3 PUFA, leads to impaired development of the body and its state of health, which are manifestations of avitaminosis F. Prevention and treatment of avitaminosis F is carried out with drugs that contain PUFA. To create new, more effective vitamin F preparations, it is necessary to reproduce the model of vitamin F deficiency. An experimental model of vitamin F deficiency in white rats kept on a fat –free diet with the addition of coconut oil, which is almost completely free of unsaturated fatty acids, and saturated fatty acids make up almost 99 % of all fatty acids was developed. The total content of ω-6 PUFA (sum of linoleic and arachidonic acids), the content of ω-3 PUFA (α-linolenic, eicosapentaenoic and docosahexaenoic acids) in neutral lipids (triglycerides and cholesterol esters) defined. Тhe content of ω-6 PUFA under the influence of coconut oil decreased by 3.3 times, and the content of ω-3 PUFA - by 7.5 times. Тhe influence of coconut oil, the content of ω-6 PUFA decreased by 2.1 times, and the content of ω-3 PUFA - by 2.8 times. The most strongly reduces the content of ω-3 PUFA, namely eicosapentaenoic, coconut oil, starting from 5 %. Consumption of FFD with a content of 15 % coconut oil reduces the content of eicosapentaenoic acid to zero, ie we have an absolute deficiency of one of the most important essential PUFAs, which determined the presence of vitamin F deficiency.


2014 ◽  
Vol 4 (1) ◽  
pp. 31-39
Author(s):  
Siwitri Kadarsih

The objective was to get beef that contain unsaturated fatty acids (especially omega 3 and 6), so as to improve intelligence, physical health for those who consume. The study design using CRD with 3 treatments, each treatment used 4 Bali cattle aged approximately 1.5 years. Observations were made 8 weeks. Pasta mixed with ginger provided konsentrat. P1 (control); P2 (6% saponification lemuru fish oil, olive oil 1%; rice bran: 37.30%; corn: 62.70%; KLK: 7%, ginger paste: 100 g); P3 (lemuru fish oil saponification 8%, 2% olive oil; rice bran; 37.30; corn: 62.70%; KLK: 7%, ginger paste: 200 g). Konsentrat given in the morning as much as 1% of the weight of the cattle based on dry matter, while the grass given a minimum of 10% of the weight of livestock observation variables include: fatty acid composition of meat. Data the analyzies qualitative. The results of the study showed that the composition of saturated fatty acids in meat decreased and an increase in unsaturated fatty acids, namely linoleic acid (omega 6) and linolenic acid (omega 3), and deikosapenta deikosaheksa acid.Keywords : 


2020 ◽  
Vol 16 (2) ◽  
pp. 142-154 ◽  
Author(s):  
Hadi Emamat ◽  
Zahra Yari ◽  
Hossein Farhadnejad ◽  
Parvin Mirmiran

Recent evidence has highlighted that fat accumulation, particularly abdominal fat distribution, is strongly associated with metabolic disturbance. It is also well-recognized that the metabolic responses to variations in macronutrients intake can affect body composition. Previous studies suggest that the quality of dietary fats can be considered as the main determinant of body-fat deposition, fat distribution, and body composition without altering the total body weight; however, the effects of dietary fats on body composition have controversial results. There is substantial evidence to suggest that saturated fatty acids are more obesogen than unsaturated fatty acids, and with the exception of some isomers like conjugate linoleic acid, most dietary trans fatty acids are adiposity enhancers, but there is no consensus on it yet. On the other hand, there is little evidence to indicate that higher intake of the n-3 and the n-6 polyunsaturated fatty acids can be beneficial in attenuating adiposity, and the effect of monounsaturated fatty acids on body composition is contradictory. Accordingly, the content of this review summarizes the current body of knowledge on the potential effects of the different types of dietary fatty acids on body composition and adiposity. It also refers to the putative mechanisms underlying this association and reflects on the controversy of this topic.


2020 ◽  
Vol 16 ◽  
Author(s):  
Natasa P. Kalogiouri ◽  
Natalia Manousi ◽  
Erwin Rosenberg ◽  
George A. Zachariadis ◽  
Victoria F. Samanidou

Background:: Nuts have been incorporated into guidelines for healthy eating since they contain considerable amounts of antioxidants and their effects are related to health benefits since they contribute to the prevention of nutritional deficiencies. The micronutrient characterization is based mainly on the determination of phenolics which is the most abundant class of bioactive compounds in nuts. Terpenes constitute another class of bioactive compounds that are present in nuts and show high volatility. The analysis of phenolic compounds and terpenes are very demanding tasks that require optimization of the chromatographic conditions to improve the separation of the components. Moreover, nuts are rich in unsaturated fatty acids and they are therefore considered as cardioprotective. Gas chromatography is the predominant instrumental analytical technique for the determination of derivatized fatty acids and terpenes in food matrices, while high performance liquid chromatography is currently the most popular technique for the determination of phenolic compounds Objective:: This review summarizes all the recent advances in the optimization of the chromatographic conditions for the determination of phenolic compounds, fatty acids and terpenes in nuts Conclusion:: The state-of-the art in the technology available is critically discussed, exploring new analytical approaches to reduce the time of analysis and improve the performance of the chromatographic systems in terms of precision, reproducibility, limits of detection and quantification and overall quality of the results


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lihong Ma ◽  
Xinqi Cheng ◽  
Chuan Wang ◽  
Xinyu Zhang ◽  
Fei Xue ◽  
...  

Abstract Background Cottonseed is one of the major sources of vegetable oil. Analysis of the dynamic changes of fatty acid components and the genes regulating the composition of fatty acids of cottonseed oil is of great significance for understanding the biological processes underlying biosynthesis of fatty acids and for genetic improving the oil nutritional qualities. Results In this study, we investigated the dynamic relationship of 13 fatty acid components at 12 developmental time points of cottonseed (Gossypium hirsutum L.) and generated cottonseed transcriptome of the 12 time points. At 5–15 day post anthesis (DPA), the contents of polyunsaturated linolenic acid (C18:3n-3) and saturated stearic acid (C18:0) were higher, while linoleic acid (C18:2n-6) was mainly synthesized after 15 DPA. Using 5 DPA as a reference, 15,647 non-redundant differentially expressed genes were identified in 10–60 DPA cottonseed. Co-expression gene network analysis identified six modules containing 3275 genes significantly associated with middle-late seed developmental stages and enriched with genes related to the linoleic acid metabolic pathway and α-linolenic acid metabolism. Genes (Gh_D03G0588 and Gh_A02G1788) encoding stearoyl-ACP desaturase were identified as hub genes and significantly up-regulated at 25 DPA. They seemed to play a decisive role in determining the ratio of saturated fatty acids to unsaturated fatty acids. FAD2 genes (Gh_A13G1850 and Gh_D13G2238) were highly expressed at 25–50 DPA, eventually leading to the high content of C18:2n-6 in cottonseed. The content of C18:3n-3 was significantly decreased from 5 DPA (7.44%) to 25 DPA (0.11%) and correlated with the expression characteristics of Gh_A09G0848 and Gh_D09G0870. Conclusions These results contribute to our understanding on the relationship between the accumulation pattern of fatty acid components and the expression characteristics of key genes involved in fatty acid biosynthesis during the entire period of cottonseed development.


LWT ◽  
2021 ◽  
pp. 111925
Author(s):  
Rodica Mărgăoan ◽  
Aslı Özkök ◽  
Şaban Keskin ◽  
Nazlı Mayda ◽  
Adriana Cristina Urcan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document