scholarly journals Antimicrobial Activity of Protein Fraction from Naja ashei Venom against Staphylococcus epidermidis

Molecules ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 293 ◽  
Author(s):  
Aleksandra Bocian ◽  
Ewa Ciszkowicz ◽  
Konrad K. Hus ◽  
Justyna Buczkowicz ◽  
Katarzyna Lecka-Szlachta ◽  
...  

One of the key problems of modern infectious disease medicine is the growing number of drug-resistant and multi-drug-resistant bacterial strains. For this reason, many studies are devoted to the search for highly active antimicrobial substances that could be used in therapy against bacterial infections. As it turns out, snake venoms are a rich source of proteins that exert a strong antibacterial effect, and therefore they have become an interesting research material. We analyzed Naja ashei venom for such antibacterial properties, and we found that a specific composition of proteins can act to eliminate individual bacterial cells, as well as the entire biofilm of Staphylococcus epidermidis. In general, we used ion exchange chromatography (IEX) to obtain 10 protein fractions with different levels of complexity, which were then tested against certified and clinical strains of S. epidermidis. One of the fractions (F2) showed exceptional antimicrobial effects both alone and in combination with antibiotics. The protein composition of the obtained fractions was determined using mass spectrometry techniques, indicating a high proportion of phospholipases A2, three-finger toxins, and L-amino acids oxidases in F2 fraction, which are most likely responsible for the unique properties of this fraction. Moreover, we were able to identify a new group of low abundant proteins containing the Ig-like domain that have not been previously described in snake venoms.

2019 ◽  
Vol 74 (2) ◽  
pp. 407-419 ◽  
Author(s):  
Aleksandra Bocian ◽  
Konrad K. Hus

Abstract An increasing problem in the field of health protection is the emergence of drug-resistant and multi-drug-resistant bacterial strains. They cause a number of infections, including hospital infections, which currently available antibiotics are unable to fight. Therefore, many studies are devoted to the search for new therapeutic agents with bactericidal and bacteriostatic properties. One of the latest concepts is to search for this type of substances among toxins produced by venomous animals. In this approach, however, special attention is paid to snake venom because it contains molecules with antibacterial properties. Thorough investigations have shown that the phospholipases A2 (PLA2) and l-amino acids oxidases (LAAO), as well as fragments of these enzymes, are mainly responsible for the bactericidal properties of snake venoms. Some preliminary research studies also suggest that fragments of three-finger toxins (3FTx) are bactericidal. It has also been proven that some snakes produce antibacterial peptides (AMP) homologous to human defensins and cathelicidins. The presence of these proteins and peptides means that snake venoms continue to be an interesting material for researchers and can be perceived as a promising source of antibacterial agents.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4717
Author(s):  
Romeo Nago ◽  
Paul Nayim ◽  
Armelle Mbaveng ◽  
James Mpetga ◽  
Gabin Bitchagno ◽  
...  

The local botanical Imperata cylindrica in Cameroon was investigated for its antibacterial potency. The methanol extract afforded a total of seven compounds, including five hitherto unreported compounds comprising three flavonoids (1–3) and two C-15 isoprenoid analogues (4 and 5) together with known derivatives (6 and 7). The novelty of the flavonoids was related to the presence of both methyl and prenyl groups. The potential origin of the methyl in the flavonoids is discussed, as well as the chemophenetic significance of our findings. Isolation was performed over repeated silica gel and Sephadex LH-20 column chromatography and the structures were elucidated by (NMR and MS). The crude methanol extract and isolated compounds showed considerable antibacterial potency against a panel of multi-drug resistant (MDR) bacterial strains. The best MIC values were obtained with compound (2) against S. aureus ATCC 25923 (32 µg/mL) and MRSA1 (16 µg/mL).


2021 ◽  
Author(s):  
Iris K Lee ◽  
Daniel A Jacome ◽  
Joshua K Cho ◽  
Vincent Tu ◽  
Anthony Young ◽  
...  

Recently, several molecular imaging strategies have developed to image bacterial infections in humans. Nuclear approaches, specifically positron emission tomography (PET), affords sensitive detection and the ability to non-invasively locate infections deep within the body. Two key radiotracer classes have arisen: metabolic approaches targeting bacterial specific biochemical transformations, and antibiotic-based approaches that have inherent selectivity for bacteria over mammalian cells. A critical question for clinical application of antibiotic radiotracers is whether resistance to the template antibiotic abrogates specific uptake, thus diminishing the predictive value of the diagnostic test. We recently developed small-molecule PET radiotracers based on the antibiotic trimethoprim (TMP), including [11C]-TMP, and have shown their selectivity for imaging bacteria in preclinical models. Here, we measure the in vitro uptake of [11C]-TMP in pathogenic susceptible and drug-resistant bacterial strains. Both resistant and susceptible bacteria showed similar in vitro uptake, which led us to perform whole genome sequencing of these isolates to identify the mechanisms of TMP resistance that permit retained radiotracer binding. By interrogating these isolate genomes and a broad panel of previously sequenced strains, we reveal mechanisms where uptake or binding of TMP radiotracers can potentially be maintained despite the annotation of genes conferring antimicrobial resistance. Finally, we present several examples of patients with both TMP-sensitive and drug-resistant infections in our first-in-human experience with [11C]-TMP. This work underscores the ability of an antibiotic radiotracer to image bacterial infection in patients, which may allow insights into human bacterial pathogenesis, infection diagnosis, and antimicrobial response monitoring.


Author(s):  
R. Cabrera-Contreras ◽  
R. Morelos-Ramírez ◽  
J. P. Quiróz-Ríos ◽  
D. Muñoz-Quiróz

Essential oils (EOs) are commonly used in food industry, due that they possess antioxidative and antimicrobial properties. There are few essential oils that have been used in medicine, due to its potent antibacterial activity against intrahospital pathogens. OEO has experimentally shown potent antibacterial effect on nosocomial Gram-positive bacteria, therefore it can be very useful in hospital environments, where there are many bacterial pathogens, which are the etiological agents of nosocomial infections and most of them are resistant to several antibiotics. Objective: The aim of this study was to determine antimicrobial effect of OEO on most frequent bacterial intrahospital pathogens: MRSA, MRSE comparatively to selected ATCC bacterial reference strains. Methods: This experimental study investigates the antibacterial action of oregano (Origanum vulgare) essential oil (OvEO) on two human pathogens: Staphylococcus aureus (SA) and Staphylococcus epidermidis (SE) Here, we used OEO against one of the most prominent antibiotic-resistant bacterial strains: methicillin-resistant SA (MRSAmecA+ = Meticillin Resistant SA and mecA- = Meticillin Resistance SA ), methicillin-resistant SE (MRSEmecA+ = Meticillin Resistance Staphylococcus epidermidis mecA+) and reference strains: S. aureus ATCC 700699, S. epidermidis ATCC 359845 and E. coli ATCC 25922. Bactericidal effects of the OEO on these bacteria were mainly evaluated using undiluted and four serial dilutions in coconut oil (CCO) l: 1:10, 1:100, 1:200, 1:400. Results: OEO, undiluted and 4 serial dilutions showed potent antibacterial activity against all strains tested. In conclusion, this OEO could be used as an alternative in medicine. The ability of OEO to inhibit and kill clinical Multi-Drug-Resistant (MDR): MRSA and MRSE strains, highlights it´s potential for use in the management of drug-resistant MDR infections in hospitals wards.


Author(s):  
Samuel Füchtbauer ◽  
Soraya Mousavi ◽  
Stefan Bereswill ◽  
Markus M. Heimesaat

AbstractAntibiotic resistance is endangering public health globally and gives reason for constant fear of virtually intractable bacterial infections. Given a limitation of novel antibiotic classes brought to market in perspective, it is indispensable to explore novel, antibiotics-independent ways to fight bacterial infections. In consequence, the antibacterial properties of natural compounds have gained increasing attention in pharmacological sciences. We here performed a literature survey regarding the antibacterial effects of capsaicin and its derivatives constituting natural compounds of chili peppers. The studies included revealed that the compounds under investigation exerted i.) both direct and indirect antibacterial properties in vitro depending on the applied concentrations and the bacterial strains under investigation; ii.) synergistic antibacterial effects in combination with defined antibiotics; iii.) resistance-modification via inhibition of bacterial efflux pumps; iv.) attenuation of bacterial virulence factor expression; and v.) dampening of pathogen-induced immunopathological responses. In conclusion, capsaicin and its derivatives comprise promising antimicrobial molecules which could complement or replace antibiotic treatment strategies to fight bacterial infections. However, a solid basis for subsequent clinical trials requires future investigations to explore the underlying molecular mechanisms and in particular pharmaceutical evaluations in animal infection models.


2011 ◽  
Vol 1 (1) ◽  
pp. 17 ◽  
Author(s):  
Surekha Challa ◽  
Kiran K. Rajam ◽  
Vishnu V. V. Satyanarayana Kasapu ◽  
Suresh Kumar Tanneeru ◽  
Venkata Siva Satyanarayana Kantamreddi

<em>Rhynchosia scarabaeoides </em>(L.) DC plant parts are extensively used by traditional healers in India to treat a variety of bacterial diseases, such as dysentery, diarrohea and skin disorders. This article reports the antibacterial activities of n-hexane, ethyl acetate and ethanol extracts belonging to the leaf, stem and root parts of <em>R. scarabaeoides</em> against five bacterial strains, <em>Bacillus subtilis</em>, <em>Escherichia coli</em>, <em>Klebseilla pneumonia</em>, <em>Proteus vulgaris</em> and <em>Staphylococcus aureus</em>, using an agar gel diffusion method. The range of inhibition zone (IZ) was found to be 15-24 mm and the minimum inhibitory activity (MIC) was found to be 1 mL/well. The IZ was found to be higher in ethyl acetate extracts while this was moderate in ethanol extracts, and no activity was seen with n-hexane extracts or root extracts. The MIC value of leaf ethyl acetate extract was found to be 1 mg against bacterial strains <em>P. vulgaris</em> and <em>S. aureus</em>, whereas 2 mg was found against <em>B. subtilis</em>, <em>K. pneumoniae</em> and <em>E. coli</em>. These results support the traditional usage of R. scarabaeoides plant parts in the treatment of bacterial infections. Interestingly, this plant was screened for antibacterial activity for the first time and was found to be active. Detailed chemical investigations are, therefore, warranted.


2011 ◽  
Vol 2011 ◽  
pp. 1-4 ◽  
Author(s):  
Bruno L. Ferreira ◽  
Dilvani O. Santos ◽  
André Luis dos Santos ◽  
Carlos R. Rodrigues ◽  
Cícero C. de Freitas ◽  
...  

Bacterial infections involving multidrug-resistant strains are one of the ten leading causes of death and an important health problem in need for new antibacterial sources and agents. Herein, we tested and compared four snake venoms (Agkistrodon rhodostoma, Bothrops jararaca, B. atrox and Lachesis muta) against 10 Gram-positive and Gram-negative drug-resistant clinical bacteria strains to identify them as new sources of potential antibacterial molecules. Our data revealed that, as efficient as some antibiotics currently on the market (minimal inhibitory concentration (MIC) = 1–32 μg mL−1),A. rhodostomaandB. atroxvenoms were active againstStaphylococcus epidermidisandEnterococcus faecalis(MIC = 4.5 μg mL−1), whileB. jararacainhibitedS. aureusgrowth (MIC = 13 μg ml−1). As genomic and proteomic technologies are improving and developing rapidly, our results suggested thatA. rhodostoma, B. atroxandB. jararacavenoms and glands are feasible sources for searching antimicrobial prototypes for future design new antibiotics against drug-resistant clinical bacteria. They also point to an additional perspective to fully identify the pharmacological potential of these venoms by using different techniques.


2014 ◽  
Vol 19 ◽  
pp. 40-51 ◽  
Author(s):  
M. Chandrasekaran ◽  
Venugopalan Venkatesalu ◽  
G. Adaikala Raj ◽  
S. Krishnamoorthy

The present study was conducted to evaluate the antibacterial activity of different organic solvent increasing polarity viz., hexane, chloroform, ethyl acetate, acetone and methanol extracts of Ulva fasciata (Chlorophyceae) were collected from Kanniyakummari, Gulf of Mannar biosphere Reserve, Tamilnadu, India. Marine green algae extracts of U. fasciata against multi-drug resistant standard and clinical bacterial strains viz., Bacillus subtilis, Streptococcus pyogenes, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhimurium, Vibrio cholerae, Shigella flexneri, Proteus mirabilis and P. vulgaris. The ethyl acetate extracts of U. fasciata showed highest antibacterial activity against all the bacterial strains tested. The mean zone of inhibition produced by the extracts in disc diffusion assays were ranged from 7.1 mm to 15.0 mm. The Minimum Inhibitory Concentrations (MIC) were between 125 μg/ml and 500 μg/ml, while the Minimum Bactericidal Concentrations (MBC) were between 250 μg/ml and 1000 μg/ml. The highest mean of zone inhibition (15.0 mm) and lowest MIC (125 μg/ml) and MBC (250 μg/ml) values were observed in ethyl acetate extract of U. fasciata against B. subtilis. The ethyl acetate extract of the U. fasciata showed the presence of phytochemicals, terpenoids, tannins and phenolic compounds in U. fasciata than the other solvents extracts. The present results of the ethyl acetate extract of U. fasciata can be used as an antibacterial substance for the treatment of multi drug resistant bacterial infections


2017 ◽  
Vol 69 (1) ◽  
pp. 29
Author(s):  
Sanghamitra Padhi

<p class="ABS">The world has seen the emergence of many micro-organisms in the recent past which can curb the human population with their newly built genetic make-up. The latest addition to this list of panic creating organisms is, bacteria encoding the gene for New Delhi metallo-beta-lactamase (NDM)-1. NDM-1 is an enzyme that can hydrolyse and inactivate carbapenems, which are used as a last resort for the treatment of multiresistant bacterial infections. Name of these bacteria were not found in the medical literature before December 2009, because of which it can take the credit of becoming a powerful emerging bacteria which are difficult to treat. Besides <span class="Italic">Escherichia</span><span class="CharOverride-2"> </span><span class="Italic">coli</span> and <span class="BoldItalic CharOverride-2">Klebsiella pneumoniae</span>, other bacterial strains have also expressed the gene for NDM-1, which are detected in many countries.</p><div> </div>


2005 ◽  
Vol 71 (12) ◽  
pp. 8895-8902 ◽  
Author(s):  
Munehiro Kubota ◽  
Masayoshi Matsui ◽  
Hiroyuki Chiku ◽  
Nobuyuki Kasashima ◽  
Manabu Shimojoh ◽  
...  

ABSTRACT Cell adsorption and selective desorption for separation of microbial cells were conducted by using chitosan-immobilized silica (CIS). When chitosan was immobilized onto silica surfaces with glutaraldehyde, bacterial cells adsorbed well and retained viability. Testing of the adsorption and desorption ability of CIS using various microbes such as Escherichia coli, Aeromonas hydrophila, Pseudomonas aeruginosa, Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Staphylococcus epidermidis, Lactobacillus casei, Streptococcus mutans, Streptococcus sobrinus, Streptococcus salivarius, Saccharomyces cerevisiae, Saccharomyces ludwigii, and Schizosaccharomyces pombe revealed that most microbes could be adsorbed and selectively desorbed under different conditions. In particular, recovery was improved when l-cysteine was added. A mixture of two bacterial strains adsorbed onto CIS could also be successfully separated by use of specific solutions for each strain. Most of the desorbed cells were alive. Thus, quantitative and selective fractionation of cells is readily achievable by employing chitosan, a known antibacterial material.


Sign in / Sign up

Export Citation Format

Share Document