scholarly journals Glycosaminoglycans as Tools to Decipher the Platelet Tumor Cell Interaction: A Focus on P-Selectin

Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1039 ◽  
Author(s):  
Svenja Schwarz ◽  
Lukas Maria Gockel ◽  
Annamaria Naggi ◽  
Uri Barash ◽  
Martina Gobec ◽  
...  

Tumor cell–platelet interactions are regarded as an initial crucial step in hematogenous metastasis. Platelets protect tumor cells from immune surveillance in the blood, mediate vascular arrest, facilitate tumor extravasation, growth, and finally angiogenesis in the metastatic foci. Tumor cells aggregate platelets in the bloodstream by activation of the plasmatic coagulation cascade and by direct contact formation. Antimetastatic activities of unfractionated or low molecular weight heparin (UFH/LMWH) can undoubtedly be related to attenuated platelet activation, but molecular mechanisms and contribution of contact formation vs. coagulation remain to be elucidated. Using a set of non-anticoagulant heparin derivatives varying in size or degree of sulfation as compared with UFH, we provide insight into the relevance of contact formation for platelet activation. Light transmission aggregometry and ATP release assays confirmed that only those heparin derivatives with P-selectin blocking capacities were able to attenuate breast cancer cell-induced platelet activation, while pentasaccharide fondaparinux was without effects. Furthermore, a role of P-selectin in platelet activation and signaling could be confirmed by proteome profiler arrays detecting platelet kinases. In this study, we demonstrate that heparin blocks tumor cell-induced coagulation. Moreover, we identify platelet P-selectin, which obviously acts as molecular switch and controls aggregation and secretion of procoagulant platelets.

BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ethan P. Metz ◽  
Erin L. Wuebben ◽  
Phillip J. Wilder ◽  
Jesse L. Cox ◽  
Kaustubh Datta ◽  
...  

Abstract Background Quiescent tumor cells pose a major clinical challenge due to their ability to resist conventional chemotherapies and to drive tumor recurrence. Understanding the molecular mechanisms that promote quiescence of tumor cells could help identify therapies to eliminate these cells. Significantly, recent studies have determined that the function of SOX2 in cancer cells is highly dose dependent. Specifically, SOX2 levels in tumor cells are optimized to promote tumor growth: knocking down or elevating SOX2 inhibits proliferation. Furthermore, recent studies have shown that quiescent tumor cells express higher levels of SOX2 compared to adjacent proliferating cells. Currently, the mechanisms through which elevated levels of SOX2 restrict tumor cell proliferation have not been characterized. Methods To understand how elevated levels of SOX2 restrict the proliferation of tumor cells, we engineered diverse types of tumor cells for inducible overexpression of SOX2. Using these cells, we examined the effects of elevating SOX2 on their proliferation, both in vitro and in vivo. In addition, we examined how elevating SOX2 influences their expression of cyclins, cyclin-dependent kinases (CDKs), and p27Kip1. Results Elevating SOX2 in diverse tumor cell types led to growth inhibition in vitro. Significantly, elevating SOX2 in vivo in pancreatic ductal adenocarcinoma, medulloblastoma, and prostate cancer cells induced a reversible state of tumor growth arrest. In all three tumor types, elevation of SOX2 in vivo quickly halted tumor growth. Remarkably, tumor growth resumed rapidly when SOX2 returned to endogenous levels. We also determined that elevation of SOX2 in six tumor cell lines decreased the levels of cyclins and CDKs that control each phase of the cell cycle, while upregulating p27Kip1. Conclusions Our findings indicate that elevating SOX2 above endogenous levels in a diverse set of tumor cell types leads to growth inhibition both in vitro and in vivo. Moreover, our findings indicate that SOX2 can function as a master regulator by controlling the expression of a broad spectrum of cell cycle machinery. Importantly, our SOX2-inducible tumor studies provide a novel model system for investigating the molecular mechanisms by which elevated levels of SOX2 restrict cell proliferation and tumor growth.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4852-4852
Author(s):  
Stavroula Baritaki ◽  
Sara Huerta-Yepez ◽  
Kam Yeung ◽  
Manuel Penichet ◽  
Haiming Chen ◽  
...  

Abstract Objective and Rationale Raf-1 kinase inhibitory protein (RKIP) is a modulator of cell signaling and survival that functions as an endogenous inhibitor of multiple kinases, including kinases involved in the Raf/MEK/ERK and NF-κB pathways. RKIP has been identified as a metastasis suppressor gene and an immune surveillance cancer gene, since loss of RKIP protein expression has been associated with tumor progression, metastasis and escape from immune surveillance. Further, RKIP expression has been associated with prognostic significance in many cancers. Recently, we have demonstrated that induction of RKIP expression in tumors with low RKIP levels results in increased tumor cell sensitivity to immuno- or chemo-therapy via inhibition of the above pathways. However, multiple myeloma (MM) cells have been shown to express high RKIP levels compared to other tumors and still remain highly resistant to conventional cytotoxic therapies. These findings were unexpected and thus, it was plausible that the high level of RKIP expression was not functionally active. It has been reported that phosphorylation of RKIP at Ser-153 renders the cells inactive (Rosner et al., 2003, J Biol Chem 278:13061–8). Thus, we examined the expression and the phosphorylation status of the RKIP protein in several multiple myeloma cell lines and tissues and compared them with other cell lines with low RKIP expression. Hypothesis We hypothesized that MM tumor cells express high levels of the inactive phoshorylated RKIP protein which antagonizes the active non-phoshorylated RKIP form in the inhibition of the survival signaling pathways. Experimental Designs and Methods Multiple myeloma (IM-9, RPMI 8226, MM1S, U266 cell lines and fresh bone marrow samples from MM patients), PC-3 prostatic carcinoma and Ramos B-NHL cell lines were examined for total and phosphorylated RKIP expression by IHC and Western Blot analyses. The total RKIP protein was significantly elevated in multiple myeloma cell lines compared to the prostate and B-NHL lines. The predominant RKIP form in multiple myeloma tumors was the phosphorylated RKIP protein with high nuclear localization, as assessed by IHC, while the phosphorylated RKIP levels in the non-myeloma tumors were relatively low. It has been reported that the phosphorylation of RKIP is mediated by protein kinase C (Rosner et al., 2003, J Biol Chem 278:13061–8). Additional studies in multiple myeloma cell lines also revealed high expression of the zeta isoform of PKC (PKCζ), known to phosphorylate and inactivate RKIP. Conclusions and Implications The present findings demonstrate that the aberrant RKIP phosphorylation in multiple myeloma tumors may result in the inhibition of the suppressive effect of RKIP on tumor survival signaling pathways. We postulate that the high expression of RKIP may be due to inhibition of proteasome degradation. The present findings also suggest that screening of RKIP levels and RKIP phosphorylation status in MM may be useful as prognostic factors of tumor cell response to anti-tumor therapies.


2004 ◽  
Vol 164 (6) ◽  
pp. 935-941 ◽  
Author(s):  
Hui Wang ◽  
Weili Fu ◽  
Jae Hong Im ◽  
Zengyi Zhou ◽  
Samuel A. Santoro ◽  
...  

Arrest of circulating tumor cells in distant organs is required for hematogenous metastasis, but the tumor cell surface molecules responsible have not been identified. Here, we show that the tumor cell α3β1 integrin makes an important contribution to arrest in the lung and to early colony formation. These analyses indicated that pulmonary arrest does not occur merely due to size restriction, and raised the question of how the tumor cell α3β1 integrin contacts its best-defined ligand, laminin (LN)-5, a basement membrane (BM) component. Further analyses revealed that LN-5 is available to the tumor cell in preexisting patches of exposed BM in the pulmonary vasculature. The early arrest of tumor cells in the pulmonary vasculature through interaction of α3β1 integrin with LN-5 in exposed BM provides both a molecular and a structural basis for cell arrest during pulmonary metastasis.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 5113-5113
Author(s):  
Valentina Rapozzi ◽  
Sara Huerta-Yepez ◽  
Abhijeet Joshi ◽  
Mario I. Vega ◽  
Stavroula Baritaki ◽  
...  

Abstract Abstract 5113 Photodynamic therapy (PDT) is a cancer therapeutic treatment that uses a compound called the “photosensitizer” and a particular type of visible light. When photosensitizers are exposed to a specific wavelength of light (600-800 nm), cytotoxic oxygen species are generated that kill cells (Dougherty, TJ et al., JNCI 90:889, 1998). Several clinical trials are currently underway to evaluate the use of PDT for a variety of cancers. A phase II study has been completed with photodynamic therapy in the treatment of patients with lymphoma or chronic lymphocytic leukemia. (NCT00054171). Recently, we have focused our attention about the properties of the photosensitizer Pheophorbide a (Pba), a chlorine, and its effects on different types of solid tumor cells (Rapozzi, V et al., Cancer Biol Ther 14:1318, 2009). The objective of the present study is to investigate the biochemical and molecular mechanisms by which PDT signals the B-NHL Raji lymphoma cell line (as model) and rendering the cells susceptible to both the cytotoxic mechanism of the tumor microenvironment in vivo or to the response to cytotoxic agents in vitro. We hypothesized that treatment of Raji cells with Pba/PDT in our in vitro system may result in the inhibition of resistance factors that regulate tumor cell responses to both chemotherapeutic and immunotherapeutic drugs. Our recent findings demonstrated that the constitutively overexpressed transcription factor Yin Yang 1 (YY1) regulates, in part, tumor cell resistance in lymphoma (Vega, MI et al., J Immun 175:2174, 2005). Accordingly, we examined whether treatment of Raji lymphoma cells with Pba/PDT will also result in the downregulation of YY1 expression and reverse resistance. The Raji cells were seeded at a cell density of 2×105/ml in Petri dishes. When the cells reached a 70% confluency, they were treated with different concentration (80-160-240 nM) of Pba for three hours in the dark and were then irradiated by an LED light source (640 nm at 12,7 mW for 9 min; 6.7 J/cm2). Following the light treatment, the cells were harvested at different times of incubation (18-36h) to assess apoptosis by the activation of caspase 3 using flow cytometry. In addition, different aliquots of cells were used to prepare slides for immunohistochemistry analyses. The results demonstrate that, indeed, treatment with Pba/PDT resulted in the inhibition of YY1 protein expression in Raji cells. By immunohistochemistry, PDT inhibited the basal nuclear and cytoplasmic expression of YY1 and resulted in weak cytoplasmic YY1 expression. The mechanism of YY1 inhibition might have been the result of PDT-mediated inhibition of NF-κB activity (Karmakar, S. et al., Neurosci lett 415: 242, 2007) since YY1 is transcriptionally regulated by NF-κB (Wang, H et al., Mol Cell Biol 67:4374, 2007). In addition, our preliminary findings demonstrate that treatment of drug-resistant tumor cells with PDT sensitizes the cells to drug-induced apoptosis. Overall, the data suggest that YY1 may be considered as a novel therapeutic target in PDT. Based on the findings here, we are currently examining the role of PDT in the dysregulation of the NF-κB/YY1/Snail/RKIP loop (Wu, K and Bonavida, B. Crit Rev Immun 29:241, 2009) that regulates cell survival and proliferation and resistance in lymphoma. (We acknowledge Doctors Oscar Stafsudd and Romaine Saxton for their assistance.) Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 316 (2) ◽  
pp. C264-C273 ◽  
Author(s):  
Annachiara Mitrugno ◽  
Samuel Tassi Yunga ◽  
Joanna L. Sylman ◽  
Jevgenia Zilberman-Rudenko ◽  
Toshiaki Shirai ◽  
...  

Cancer-associated thrombosis is a common first presenting sign of malignancy and is currently the second leading cause of death in cancer patients after their malignancy. However, the molecular mechanisms underlying cancer-associated thrombosis remain undefined. In this study, we aimed to develop a better understanding of how cancer cells affect the coagulation cascade and platelet activation to induce a prothrombotic phenotype. Our results show that colon cancer cells trigger platelet activation in a manner dependent on cancer cell tissue factor (TF) expression, thrombin generation, activation of the protease-activated receptor 4 (PAR4) on platelets and consequent release of ADP and thromboxane A2. Platelet-colon cancer cell interactions potentiated the release of platelet-derived extracellular vesicles (EVs) rather than cancer cell-derived EVs. Our data show that single colon cancer cells were capable of recruiting and activating platelets and generating fibrin in plasma under shear flow. Finally, in a retrospective analysis of colon cancer patients, we found that the number of venous thromboembolism events was 4.5 times higher in colon cancer patients than in a control population. In conclusion, our data suggest that platelet-cancer cell interactions and perhaps platelet procoagulant EVs may contribute to the prothrombotic phenotype of colon cancer patients. Our work may provide rationale for targeting platelet-cancer cell interactions with PAR4 antagonists together with aspirin and/or ADP receptor antagonists as a potential intervention to limit cancer-associated thrombosis, balancing safety with efficacy.


2021 ◽  
Vol 22 (17) ◽  
pp. 9121
Author(s):  
De Pradip ◽  
Aske Jennifer ◽  
Dey Nandini

A tumor cell carrying characteristic genomic alteration(s) exists within its host’s microenvironment. The tumor microenvironment (TME) renders holistic support to the tumor via cross-talk between tumor cells and three components of TME, immune components, vascular components, and fibroblast components. The tempero-spatial interaction of tumor cells with its microenvironment is the deterministic factor for tumor growth, progression, resistance to therapy, and its outcome in clinics. TME (1) facilitates proliferation, and the ensuing metastasis-associated phenotypes, (2) perturbs immune surveillance and supports tumor cells in their effort to evade immune recognition, and (3) actively participates in developing drug-induced resistance in cancer cells. Cancer-Associated Fibroblast (CAF) is a unique component of TME. CAF is the host mesenchyme immediately surrounding the tumor cells in solid tumors. It facilitates tumor growth and progression and participates in developing drug resistance in tumor cells by playing a critical role in all the ways mentioned above. The clinical outcome of a disease is thus critically contributed to by the CAF component of TME. Although CAFs have been identified historically, the functional relevance of CAF-tumor cell cross-talk and their influence on angiogenic and immune-components of TME are yet to be characterized in solid tumors, especially in endometrial cancers. Currently, the standard of care for the treatment of endometrial cancers is primarily guided by therapies directed towards the disease’s tumor compartment and immune compartments. Unfortunately, in the current state of therapies, a complete response (CR) to the therapy is still limited despite a more commonly achieved partial response (PR) and stable disease (SD) in patients. Acknowledging the limitations of the current sets of therapies based on only the tumor and immune compartments of the disease, we sought to put forward this review based on the importance of the cross-talk between CAF of the tumor microenvironment and tumor cells. The premise of the review is to recognize the critical role of CAF in disease progression. This manuscript presents a systemic review of the role of CAF in endometrial cancers. We critically interrogated the active involvement of CAF in the tumor compartment of endometrial cancers. Here we present the functional characteristics of CAF in the context of endometrial cancers. We review (1) the characteristics of CAF, (2) their evolution from being anti-tumor to pro-tumor, (3) their involvement in regulating growth and several metastasis-associated phenotypes of tumor cells, (4) their participation in perturbing immune defense and evading immune surveillance, and (5) their role in mediating drug resistance via tumor-CAF cross-talk with particular reference to endometrial cancers. We interrogate the functional characteristics of CAF in the light of its dialogue with tumor cells and other components of TME towards developing a CAF-based strategy for precision therapy to supplement tumor-based therapy. The purpose of the review is to present a new vision and initiate a thought process which recognizes the importance of CAF in a tumor, thereby resulting in a novel approach to the design and management of the disease in endometrial cancers.


Author(s):  
Alberto Hernández-Barranco ◽  
Laura Nogués ◽  
Héctor Peinado

Pre-metastatic niches provide favorable conditions for tumor cells to disseminate, home to and grow in otherwise unfamiliar and distal microenvironments. Tumor-derived extracellular vesicles are now recognized as carriers of key messengers secreted by primary tumors, signals that induce the formation of pre-metastatic niches. Recent evidence suggests that tumor cells can disseminate from the very earliest stages of primary tumor development. However, once they reach distal sites, tumor cells can persist in a dormant state for long periods of time until their growth is reactivated and they produce metastatic lesions. In this new scenario, the question arises as to whether extracellular vesicles could influence the formation of these metastatic niches with dormant tumor cells? (here defined as “sleepy niches”). If so, what are the molecular mechanisms involved? In this perspective-review article, we discuss the possible influence of extracellular vesicles in early metastatic dissemination and whether they might play a role in tumor cell dormancy. In addition, we comment whether extracellular vesicle-mediated signals may be involved in tumor cell awakening, considering the possibility that extracellular vesicles might serve as biomarkers to detect early metastasis and/or minimal residual disease (MRD) monitoring.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yang Liu ◽  
Ke Shi ◽  
Yong Chen ◽  
Xianrui Wu ◽  
Zheng Chen ◽  
...  

Exosomes from extracellular vesicles can activate or inhibit various signaling pathways by transporting proteins, lipids, nucleic acids and other substances to recipient cells. In addition, exosomes are considered to be involved in the development and progression of tumors from different tissue sources in numerous ways, including remodeling of the tumor microenvironment, promoting angiogenesis, metastasis, and invasion, and regulating the immune escape of tumor cells. However, the precise molecular mechanisms by which exosomes participate in these different processes remains unclear. In this review, we describe the research progress of tumor cell-derived exosomes in cancer progression. We also discuss the prospects of the application of exosomes combined with nanoengineered chemotherapeutic drugs in the treatment of cancer.


Diagnostics ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 758
Author(s):  
Eleni Vrigkou ◽  
Argyrios E. Tsantes ◽  
Petros Kopterides ◽  
Stylianos E. Orfanos ◽  
Apostolos Armaganidis ◽  
...  

Many pathophysiologic processes of pulmonary arterial hypertension (PAH), namely, excess vasoconstriction, vascular remodeling and in situ thrombosis, involve the coagulation cascade, and more specifically, platelets. The aim of this study was to globally assess coagulation processes in PAH, by using non-conventional hemostatic tests, along with markers of platelet activation and endothelial dysfunction. We studied 44 new PAH patients (22 with idiopathic PAH and 22 with connective tissue disease) and 25 healthy controls. The following tests were performed: platelet function analyzer-100 (PFA-100), light transmission aggregometry (LTA), rotational thromboelastometry (ROTEM), endogenous thrombin potential (ETP), serotonin, thromboxane A2 and p-selectin plasma levels, and von Willebrand antigen (VWF:Ag) and activity (VWF:Ac). Our results showed that PAH patients had diminished platelet aggregation, presence of disaggregation, defective initiation of the clotting process and clot propagation, and diminished thrombin formation capacity. Serotonin, thromboxane A2 and p-selectin levels were increased, and VWF:Ag and VWF:Ac decreased in the same population. The results of this study suggest that the platelets of PAH patients are activated and present functional abnormalities. The procoagulant activity, in general, appears to be impaired probably due to a sustained and prolonged activation of the procoagulant processes. Larger observational studies are warranted to confirm these laboratory findings.


2020 ◽  
Vol 21 (5) ◽  
pp. 1872 ◽  
Author(s):  
Yariswamy Manjunath ◽  
David Porciani ◽  
Jonathan B. Mitchem ◽  
Kanve N. Suvilesh ◽  
Diego M. Avella ◽  
...  

Although molecular mechanisms driving tumor progression have been extensively studied, the biological nature of the various populations of circulating tumor cells (CTCs) within the blood is still not well understood. Tumor cell fusion with immune cells is a longstanding hypothesis that has caught more attention in recent times. Specifically, fusion of tumor cells with macrophages might lead to the development of metastasis by acquiring features such as genetic and epigenetic heterogeneity, chemotherapeutic resistance, and immune tolerance. In addition to the traditional FDA-approved definition of a CTC (CD45-, EpCAM+, cytokeratins 8+, 18+ or 19+, with a DAPI+ nucleus), an additional circulating cell population has been identified as being potential fusions cells, characterized by distinct, large, polymorphonuclear cancer-associated cells with a dual epithelial and macrophage/myeloid phenotype. Artificial fusion of tumor cells with macrophages leads to migratory, invasive, and metastatic phenotypes. Further studies might investigate whether these have a potential impact on the immune response towards the cancer. In this review, the background, evidence, and potential relevance of tumor cell fusions with macrophages is discussed, along with the potential role of intercellular connections in their formation. Such fusion cells could be a key component in cancer metastasis, and therefore, evolve as a diagnostic and therapeutic target in cancer precision medicine.


Sign in / Sign up

Export Citation Format

Share Document