scholarly journals The Influence of Anthocyanidin Profile on Antileishmanial Activity of Arrabidaea chica Morphotypes

Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3547
Author(s):  
Carla Junqueira Moragas-Tellis ◽  
Fernando Almeida-Souza ◽  
Maria do Socorro dos Santos Chagas ◽  
Paulo Victor Ramos de Souza ◽  
João Victor Silva-Silva ◽  
...  

Arrabidaea chica Verlot (crajiru) is a plant used in folk medicine as an astringent, anti-inflammatory, wound healing and to treat fungal and viral diseases such as measles chickenpox and herpes. Arrabidaea chica has several morphotypes recognized but little is known about its chemical variability. In the present study the anthocyanidin profile of A. chica morphotypes collected in two seasons (summer and winter) have been examined and their activity against Leishmania infection compared. High-performance liquid chromatography coupled to a diode-array detector (HPLC-DAD-UV) and by tandem mass spectrometry with electrospray ionization (ESI-MS/MS) were used for anthocyanidin separation and identification. Antileishmanial activity was measured against promastigote forms of Leishmania amazonensis. Multivariate analysis, principal component analysis (PCA) and Pearson’s correlation were performed to classify morphotypes accordingly to their anthocyanidin profile. The presence of 6,7,3′,4′-tetrahydroxy-5-methoxyflavylium (3′-hydroxy-carajurone) (1), carajurone (2), 6,7,3′-trihydroxy-5,4′-dimethoxy-flavylium (3′-hydroxy-carajurin) (3) and carajurin (4), and three unidentified anthocyanidins were detected. Two different groups were recognized: group I containing 3′-hydroxy-carajurone; and group II with high content of carajurin. Among anthocyanidins identified in the extracts, only carajurin showed significant statistical correlation (p = 0.030) with activity against L. amazonensis. Carajurin could thus be considered as a pharmacological marker for the antileishmanial potential of the species.

Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 391 ◽  
Author(s):  
Fotirić Akšić ◽  
Gašić ◽  
Dabić Zagorac ◽  
Sredojević ◽  
Tosti ◽  
...  

The aim of this research was to analyze sugars and phenolics of pollen obtained from 15 different ‘Oblačinska’ sour cherry clones and to assess the chemical fingerprint of this cultivar. Carbohydrate analysis was done using high-performance anion-exchange chromatography (HPAEC) with pulsed amperometric detection (PAD), while polyphenols were analyzed by ultra-high-performance liquid chromatography–diode array detector–tandem mass spectrometry (UHPLC-DAD MS/MS) system. Glucose was the most abundant sugar, followed by fructose and sucrose. Some samples had high level of stress sugars, especially trehalose. Rutin was predominantly polyphenol in a quantity up to 181.12 mg/kg (clone III/9), with chlorogenic acid (up to 59.93 mg/kg in clone III/9) and p-coumaric acid (up to 53.99 mg/kg in clone VIII/1) coming after. According to the principal component analysis (PCA), fructose, maltose, maltotriose, sorbitol, and trehalose were the most important sugars in separating pollen samples. PCA showed splitting off clones VIII/1, IV/8, III/9, and V/P according to the quantity of phenolics and dissimilar profiles. Large differences in chemical composition of studied ‘Oblačinska sour cherry’ clone pollen were shown, proving that it is not a cultivar, but population. Finally, due to the highest level of phenolics, clones IV/8, XV/3, and VIII/1 could be singled out as a promising one for producing functional food and/or in medicinal treatments.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5592
Author(s):  
Jung-Hoon Kim ◽  
Eui-Jeong Doh ◽  
Guemsan Lee

It is thought that the therapeutic efficacy of Morus alba L. is determined by its biological compounds. We investigated the chemical differences in the medicinal parts of M. alba by analyzing a total of 57 samples (15 root barks, 11 twigs, 12 fruits, and 19 leaves). Twelve marker compounds, including seven flavonoids, two stilbenoids, two phenolic acids, and a coumarin, were quantitatively analyzed using a high-performance liquid chromatography-diode array detector and chemometric analyses (principal component and heatmap analysis). The results demonstrated that the levels and compositions of the marker compounds varied in each medicinal part. The leaves contained higher levels of six compounds, the root barks contained higher levels of four compounds, and the twigs contained higher levels of two compounds. The results of chemometric analysis showed clustering of the samples according to the medicinal part, with the marker compounds strongly associated with each part: mulberroside A, taxifolin, kuwanon G, and morusin for the root barks; 4-hydroxycinnamic acid and oxyresveratrol for the twigs and skimmin; chlorogenic acid, rutin, isoquercitrin, astragalin, and quercitrin for the leaves. Our approach plays a fundamental role in the quality evaluation and further understanding of biological actions of herbal medicines derived from various medicinal plant parts.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1489
Author(s):  
Ah-Reum Han ◽  
Min Jeong Hong ◽  
Bomi Nam ◽  
Bo-Ram Kim ◽  
Hyeon Hwa Park ◽  
...  

Wheat (Triticum aestivum Linn.; Poaceae), one of the most popular food crops worldwide, contains basic and essential nutrients and various health benefiting phytochemicals. Among them, flavonoids have attracted significant interest owing to their various health-promoting properties. In this study, 35 wheat mutant lines were developed via gamma-irradiated mutation breeding from the original cultivar. The effects of radiation breeding on the endogenous phytochemical production in the sprouts of these mutant lines were investigated using high performance liquid chromatography-diode array detector-electrospray ionization mass spectrometry (HPLC-DAD-ESIMS) with multivariate analysis for the first time in this study. Fourteen characteristic peaks, including eleven flavone C-glycosides, two flavone O-glycosides, and one flavone, were identified. In addition, the contents of three flavone C-glycosides, namely, isoschaftoside, isoorientin, and isoscoparin, in 37 wheat sprout samples from the original cultivar, certificated cultivar, and the mutant lines were determined. A heat map combined with hierarchical clustering showed variation in the relative content for the flavonoids between the 37 wheat sprout samples, clustering into three groups. On principal component analysis scores scatter and loading plots, significant differences in the levels of flavonoids were found between the samples and several markers responsible for group separation were detected. These results provide a scientific reference for the phytochemical variation in wheat mutant lines, thereby aiding in further mutation mechanism studies and for the quality control of the improved wheat cultivars.


Antioxidants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 562
Author(s):  
Adela Pintea ◽  
Francisc Vasile Dulf ◽  
Andrea Bunea ◽  
Sonia Ancuța Socaci ◽  
Elena Andreea Pop ◽  
...  

Lipophilic constituents are important for the color and aroma of apricots, but also for their health benefits. In the present study, carotenoids, fatty acids, and volatiles were analyzed in 11 apricot cultivars, from which nine were obtained in Romania. High performance liquid chromatography coupled to a diode array detector with atmospheric pressure chemical ionization and mass spectrometry (HPLC-DAD-APCI-MS methodology applied on unsaponified carotenoid extracts allowed the identification and quantification of 19 compounds. The predominant carotenoids in all cultivars were all-trans-β-carotene and its cis isomers. Lutein was present exclusively in non-esterified form, while β-cryptoxanthin was predominantly esterified, mainly with oleic, palmitic, lauric, and stearic acid. Moreover, β-cryptoxanthin linoleate, linolenate, and stearate were detected for the first time in Harogem cultivar. Variation in carotenoid content and composition was observed, with the highest carotenoid content being recorded in Tudor, Harogem, and Mamaia cultivars. The predominant fatty acids determined by gas chromatography–mass spectrometry (GC-MS) were linoleic (up to 47%), palmitic (up to 32.7%), and linolenic (up to 17.16%), with small variations among cultivars. In-tube extraction technique (ITEX)/GC-MS was applied for profiling the volatiles in apricot fruits and 120 compounds were identified, with terpenoids and esters as the most abundant classes. Principal component analysis (PCA) revealed that the carotenoids and the fatty acids profile can be used for variety authentication and discrimination in apricots.


Weed Science ◽  
2018 ◽  
Vol 66 (3) ◽  
pp. 324-330 ◽  
Author(s):  
Jolita Radušienė ◽  
Mindaugas Marksa ◽  
Birutė Karpavičienė

AbstractThis study provides the first phytochemical characterization of the morphologically identified natural hybrid Solidago×niederederi Khek compared with the native Solidago virgaurea and two invasive species, Canada goldenrod (Solidago canadensis L.) and giant goldenrod (Solidago gigantea Aiton). The phenolic compounds, namely, chlorogenic acid, rutin, isoquercitrin, hyperoside, and quercitrin, were detected in leaves and inflorescences by the high-performance liquid chromatography–photodiode array detector/ultraviolet (PAD/UV) method. All analyzed Solidago species contained all of the phenolic compounds investigated. The quantitative phytochemical differentiation among Solidago taxa was shown by principal component analysis. The results indicated that S. gigantea plants were characterized by significantly different quantities of phenolic compounds compared with three other Solidago taxa, which formed a separate cluster in the space of the principal component model, indicating the high similarity of their profiles. An additional multivariate analysis of the three species studied revealed a chemical gradient from S. canadensis to S. virgaurea with a slightly overlapping zone on the score plots presented by S.×niederederi and S. virgaurea accessions. The results showed that S.×niederederi was closely related to S. virgaurea. This result is suggestive of a hybrid origin with significant contributions from the native species. However, S.×niederederi was significantly different from its parental species with respect to chlorogenic acid and quercitrin in leaves and rutin with isoquercitrin in inflorescences. Conversely, samples indicating intermediate chemical composition between native S. virgaurea and invasive S. gigantea were not distinguished. The comparison of phenolic compound accumulation in Solidago plants supported the additional identification of the origin of S.×niederederi.


Separations ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 12
Author(s):  
Rifki Husnul Khuluk ◽  
Amalia Yunita ◽  
Eti Rohaeti ◽  
Utami Dyah Syafitri ◽  
Roza Linda ◽  
...  

A simple and efficient method has been developed for the simultaneous determination of eight flavonoids (orientin, hyperoside, rutin, myricetin, luteolin, quercetin, kaempferol, and apigenin) in Sonchus arvensis by high-performance liquid chromatography diode array detector (HPLC-DAD). This method was utilized to differentiate S. arvensis samples based on the plant parts (leaves, stems, and roots) and the plant’s geographical origin. The chromatographic separation was carried out on a reverse-phase C18 column by eluting at a flow rate of 1 mL/min using a gradient with methanol and 0.2% aqueous formic acid. In the optimum conditions, the developed method’s system suitability has met the criteria of good separation. The calibration curve shows a linear relationship between the peak area and analyte concentration with a correlation coefficient (r2) > 0.9990. The ranges for the analytes’ limits of detection and quantitation were 0.006–0.015 and 0.020–0.052 µg/mL, respectively. Intra-day and inter-day precision expressed in terms of RSD values were <2%, and the accuracy range based on recovery was 97–105%. The stability of all analytes within 48 h was about 2%. By combining HPLC-DAD fingerprint analysis with chemometrics, the developed method can classify S. arvensis samples based on the plant parts and geographical origin.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 153 ◽  
Author(s):  
Martina Jakovljević ◽  
Jelena Vladić ◽  
Senka Vidović ◽  
Kristian Pastor ◽  
Stela Jokić ◽  
...  

Satureja montana L. was used in the current research as the plant exhibits numerous health-promoting benefits due to its specific chemical composition. The extraction method based on deep eutectic solvents (DESs) was used for the extraction of rutin and rosmarinic acid from this plant. Five different choline chloride-based DESs with different volumes of water (10%, 30%, and 50% (v/v)) were used for the extraction at different temperatures (30, 50, and 70 °C) to investigate the influence on rosmarinic acid and rutin content obtained by high-performance liquid chromatography with diode-array detector (HPLC-DAD) in the obtained extracts. A principal component analysis was employed to explore and visualize the influence of applied parameters on the efficiency of the extraction procedure of rutin and rosmarinic acid. Among the tested DESs, choline chloride:lactic acid (mole ratio 1:2) and choline chloride:levulinic acid (mole ratio 1:2) were the most suitable for the extraction of rutin, while for rosmarinic acid choline chloride:urea (mole ratio 1:2) was the most effective solvent. The extract showing the best antiradical activity was obtained with choline chloride:urea (mole ratio 1:1) at 30 °C and 50% H2O (v/v).


2020 ◽  
Vol 58 (10) ◽  
pp. 961-968
Author(s):  
Nikunj D Patel ◽  
Prajesh N Prajapati ◽  
Niranjan S Kanaki

Abstract “Sitopaladi churna,” a well-known formulation of Ayurveda, is prescribed to treat the disease like Bronchitis, Pneumonia, allergic conditions, viral infection of the respiratory tract and as a natural antioxidant. A novel method based on reversed-phase high-performance liquid chromatography (RP-HPLC) coupled to photodiode array detector was established and validated for sitopaladi churna. Here, HPLC fingerprints data obtained for 28 samples including standard sample were then treated to chemometric analysis like principal component analysis and hierarchical clustering analysis for further analysis to evaluate the differences in market samples of sitopaladi churna. Additionally, one major marker compound, piperine was quantified and it also facilitated for relative retention time. The simulative mean spectrum was also generated. The validation results showed that the developed method was simple, precise and stable. Thus, the developed chromatographic method adjoined with multivariate analysis can be used as an efficient and practical approach for quality assessment of sitopaladi churna.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 94
Author(s):  
Radka Vrancheva ◽  
Ivan Ivanov ◽  
Ivayla Dincheva ◽  
Ilian Badjakov ◽  
Atanas Pavlov

The purpose of the current study was to identify and quantify triterpenoids and other non-polar compounds in the leaves of three high bush blueberry cultivars (Vaccinium corymbosum L. var. Bluegold, var. Bluecrop and var. Elliott) and three natural populations of Vaccinium species (Vaccinium uliginosum L., Vaccinium myrtillus L. and Vaccinium vitis-idaea L.) by means of gas chromatography mass spectrometry (GC-MS) and high-performance liquid chromatography with diode array detector (HPLC-DAD). Metabolite profiles differed significantly among the Vaccinium species analyzed, as well as among the populations of the same species. The populations of V. vitis-idaea predominantly contained relative concentrations of phytosterols (varying between 10.48% of total ion current (TIC) and 22.29% of TIC) and almost twice the content of triterpenes (from 29.84% of TIC to 49.62% of TIC) of the other berry species investigated. The leaves of V. corymbosum varieties biosynthesized the highest relative amount of fatty acids, while the leaves of the populations of V. uliginosum had the highest relative concentrations of fatty alcohols. The results of principal component analysis (PCA) and hierarchical cluster analysis (HCA) showed that the diverse populations of each berry species analyzed differed from each other, most likely due to variations in the climatic and geographical conditions of their localities.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2617
Author(s):  
Woo-Sung Park ◽  
Hye-Jin Kim ◽  
Atif Ali Khan Khalil ◽  
Dong-Min Kang ◽  
Kazi-Marjahan Akter ◽  
...  

Ulmus species (Ulmaceae) are large deciduous trees distributed throughout Korea. Although their root and stem bark have been used to treat gastrointestinal diseases and wounds in folk medicine, commercial products are consumed without any standardization. Therefore, we examined anatomical and chemical differences among five Ulmus species in South Korea. Transverse sections of leaf, stem, and root barks were examined under a microscope to elucidate anatomical differences. Stem and root bark exhibited characteristic medullary ray and secretary canal size. Leaf surface, petiole, and midrib exhibited characteristic inner morphologies including stomatal size, parenchyma, and epidermal cell diameter, as well as ratio of vascular bundle thickness to diameter among the samples. Orthogonal projections to latent structures discriminant analysis of anatomical data efficiently differentiated the five species. To evaluate chemical differences among the five species, we quantified (-)-catechin, (-)-catechin-7-O-β-D-apiofuranoside, (-)-catechin-7-O-α-L-rhamnopyranoside, (-)-catechin-7-O-β-D-xylopyranoside, (-)-catechin-7-O-β-D-glucopyranoside, and (-)-catechin-5-O-β-D-apiofuranoside using high-performance liquid chromatography with a diode-array detector. (-)-Catechin-7-O-β-D-apiofuranoside content was the highest among all compounds in all species, and (-)-catechin-7-O-α-L-rhamnopyranoside content was characteristically the highest in Ulmus parvifolia among the five species. Overall, the Ulmus species tested was able to be clearly distinguished on the basis of anatomy and chemical composition, which may be used as scientific criteria for appropriate identification and standard establishment for commercialization of these species


Sign in / Sign up

Export Citation Format

Share Document