scholarly journals Insights into Multifunctional Nanoparticle-Based Drug Delivery Systems for Glioblastoma Treatment

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2262
Author(s):  
Mohd Khan ◽  
Subuhi Sherwani ◽  
Saif Khan ◽  
Sultan Alouffi ◽  
Mohammad Alam ◽  
...  

Glioblastoma (GB) is an aggressive cancer with high microvascular proliferation, resulting in accelerated invasion and diffused infiltration into the surrounding brain tissues with very low survival rates. Treatment options are often multimodal, such as surgical resection with concurrent radiotherapy and chemotherapy. The development of resistance of tumor cells to radiation in the areas of hypoxia decreases the efficiency of such treatments. Additionally, the difficulty of ensuring drugs effectively cross the natural blood–brain barrier (BBB) substantially reduces treatment efficiency. These conditions concomitantly limit the efficacy of standard chemotherapeutic agents available for GB. Indeed, there is an urgent need of a multifunctional drug vehicle system that has potential to transport anticancer drugs efficiently to the target and can successfully cross the BBB. In this review, we summarize some nanoparticle (NP)-based therapeutics attached to GB cells with antigens and membrane receptors for site-directed drug targeting. Such multicore drug delivery systems are potentially biodegradable, site-directed, nontoxic to normal cells and offer long-lasting therapeutic effects against brain cancer. These models could have better therapeutic potential for GB as well as efficient drug delivery reaching the tumor milieu. The goal of this article is to provide key considerations and a better understanding of the development of nanotherapeutics with good targetability and better tolerability in the fight against GB.

2021 ◽  
Vol 12 ◽  
Author(s):  
Jin Xie ◽  
Shengjie Huang ◽  
Haozhou Huang ◽  
Xuan Deng ◽  
Pengfei Yue ◽  
...  

Psoriasis, an incurable autoimmune skin disease, is one of the most common immune-mediated disorders. Presently, numerous clinical research studies are underway, and treatment options are available. However, these treatments focus on improving symptoms of the disease and fail to achieve a radical cure; they also have certain toxic side effects. In recent years, natural products have increasingly gained attention because of their high efficiency and low toxicity. Despite their obvious therapeutic effects, natural products’ biological activity was limited by their instability, poor solubility, and low bioavailability. Novel drug delivery systems, including liposomes, lipospheres, nanostructured lipid carriers, niosomes, nanoemulsions, nanospheres, microneedles, ethosomes, nanocrystals, and foams could potentially overcome the limitations of poor water solubility and permeability in traditional drug delivery systems. Thus, to achieve a therapeutic effect, the drug can reach the epidermis and dermis in psoriatic lesions to interact with the immune cells and cytokines.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Pengyu Gao ◽  
Dan Zou ◽  
Ansha Zhao ◽  
Ping Yang

Achievement of high targeting efficiency for a drug delivery system remains a challenge of tumor diagnoses and nonsurgery therapies. Although nanoparticle-based drug delivery systems have made great progress in extending circulation time, improving durability, and controlling drug release, the targeting efficiency remains low. And the development is limited to reducing side effects since overall survival rates are mostly unchanged. Therefore, great efforts have been made to explore cell-driven drug delivery systems in the tumor area. Cells, particularly those in the blood circulatory system, meet most of the demands that the nanoparticle-based delivery systems do not. These cells possess extended circulation times and innate chemomigration ability and can activate an immune response that exerts therapeutic effects. However, new challenges have emerged, such as payloads, cell function change, cargo leakage, and in situ release. Generally, employing cells from the blood circulatory system as cargo carriers has achieved great benefits and paved the way for tumor diagnosis and therapy. This review specifically covers (a) the properties of red blood cells, monocytes, macrophages, neutrophils, natural killer cells, T lymphocytes, and mesenchymal stem cells; (b) the loading strategies to balance cargo amounts and cell function balance; (c) the cascade strategies to improve cell-driven targeting delivery efficiency; and (d) the features and applications of cell membranes, artificial cells, and extracellular vesicles in cancer treatment.


2015 ◽  
Vol 3 (32) ◽  
pp. 6599-6604 ◽  
Author(s):  
M. T. Cook ◽  
S. A. Schmidt ◽  
E. Lee ◽  
W. Samprasit ◽  
P. Opanasopit ◽  
...  

Thiol-bearing microgels have been synthesised from copolymerisation of 2-(acetylthio)ethylacrylate and 2-hydroxyethylmethacrylate, and subsequent deprotection using sodium thiomethoxide.


Author(s):  
И.Ю. Малышев ◽  
Л.В. Кузнецова ◽  
О.П. Буданова

В обзоре представлены современные данные о механизмах диагностики, планирования и оценки успешности терапии различных заболеваний с помощью экзосом, об использовании их как нанопереносчиков (т.е. нановезикул для эффективной доставки молекул). За последние годы разработано большое количество разных, в основном синтетических, систем доставки лекарственных средств, недостатками этих систем является плохая биосовместимость и органическая неспособность к высокоточной доставке загруженных веществ. По сравнению с синтетическими системами доставки лекарственных средств, экзосомы - вследствие своего естественного происхождения - могут обладать большими преимуществами, такими, как лучшая биосовместимость и повышенная устойчивость к разрушительному воздействию иммунной системы. Описана технология производства наноструктур, разработка и производство с помощью бионанотехнологий так называемых «полностью синтетических экзосомоподобных нановезикул», преимущества и недостатки этих методов. This review presents current data on mechanisms for diagnosis, planning, and evaluation of success in the treatment of various diseases using exosomes as nanocarriers (i.e., nanovesicles for efficient delivery of molecules). In recent years, a large number of different, mainly synthetic drug delivery systems has been developed. Disadvantages of these systems are poor biocompatibility and organic inability to deliver high-precision loaded substances. Compared with synthetic drug delivery systems, exosomes due to their natural origin may provide great advantages, such as better biocompatibility and increased resistance to detrimental effects of the immune system. This review describes in detail a technology of nanostructure production, the development and production of so-called fully synthetic exosome-like nanovesicles using bionanotechnology, and advantages and disadvantages of these methods.


2021 ◽  
Author(s):  
Yubin Huang ◽  
Hongtong Lu ◽  
Shasha He ◽  
Qingfei Zhang ◽  
Xiaoyuan Li ◽  
...  

The clinical application of conventional chemotherapeutic agents, represented by cisplatin, is limited by severe side effects. So, it is essential to explore more safer and controlled drug delivery systems for...


Pharmaceutics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 288 ◽  
Author(s):  
Mohamed Haider ◽  
Shifaa M. Abdin ◽  
Leena Kamal ◽  
Gorka Orive

The efficacy of current standard chemotherapy is suboptimal due to the poor solubility and short half-lives of chemotherapeutic agents, as well as their high toxicity and lack of specificity which may result in severe side effects, noncompliance and patient inconvenience. The application of nanotechnology has revolutionized the pharmaceutical industry and attracted increasing attention as a significant means for optimizing the delivery of chemotherapeutic agents and enhancing their efficiency and safety profiles. Nanostructured lipid carriers (NLCs) are lipid-based formulations that have been broadly studied as drug delivery systems. They have a solid matrix at room temperature and are considered superior to many other traditional lipid-based nanocarriers such as nanoemulsions, liposomes and solid lipid nanoparticles (SLNs) due to their enhanced physical stability, improved drug loading capacity, and biocompatibility. This review focuses on the latest advances in the use of NLCs as drug delivery systems and their preparation and characterization techniques with special emphasis on their applications as delivery systems for chemotherapeutic agents and different strategies for their use in tumor targeting.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4995 ◽  
Author(s):  
Rayssa de Sousa Victor ◽  
Adillys Marcelo da Cunha Santos ◽  
Bianca Viana de Sousa ◽  
Gelmires de Araújo Neves ◽  
Lisiane Navarro de Lima Santana ◽  
...  

Chitosan, derived from chitin, is a biopolymer consisting of arbitrarily distributed β-(1-4)-linked D-glucosamine and N-acetyl-D-glucosamine that exhibits outstanding properties— biocompatibility, biodegradability, non-toxicity, antibacterial activity, the capacity to form films, and chelating of metal ions. Most of these peculiar properties are attributed to the presence of free protonable amino groups along the chitosan backbone, which also gives it solubility in acidic conditions. Moreover, this biopolymer can also be physically modified, thereby presenting a variety of forms to be developed. Consequently, this polysaccharide is used in various fields, such as tissue engineering, drug delivery systems, and cancer treatment. In this sense, this review aims to gather the state-of-the-art concerning this polysaccharide when used as a biomaterial, providing information about its characteristics, chemical modifications, and applications. We present the most relevant and new information about this polysaccharide-based biomaterial’s applications in distinct fields and also the ability of chitosan and its various derivatives to selectively permeate through the cancer cell membranes and exhibit anticancer activity, and the possibility of adding several therapeutic metal ions as a strategy to improve the therapeutic potential of this polymer.


Vesicular drug delivery system has various advantages thereby improving therapeutic efficacy and by sustaining and controlling action of drugs. Liposomes, sphingosomes, ethosomes, cubosomes, pharmacasomes, niosomes, transferosomes are the newly developed vesicular drug delivery system. This review article mainly deals with the sphingosomal drug delivery system. Sphingosomes are vesicular drug delivery systems in which an aqueous volume is enclosed with sphingolipid bilayer membranes. Sphingosomes has an enhanced area of interest because of their applicability in improving the in vivo delivery of various chemotherapeutic agents, biological macromolecules and diagnostics. Sphingosome has major advantages over other vesicular drug delivery systems like high stability, more in vivo circulation time, high tumor loading efficacy in case of cancer therapy as compared to liposomes, niosomes etc. Sphingosomes are clinically used vesicular delivery system for chemotherapeutic agent, biological macromolecule and diagnostics. This review concluded that sphingosome represents a promising vesicular drug delivery system for a range of possible therapeutic applications.


2019 ◽  
Vol 8 (1) ◽  
pp. 43-57
Author(s):  
O. V. Trineeva ◽  
A. J. Halahakoon ◽  
A. I. Slivkin

Introduction. Drug delivery systems are defined as systems that deliver the optimal amount of a drug to a target target, increase the effectiveness of treatment, and reduce adverse effects. Regulation of the rate of release of drugs and bringing to specific tissues where active ingredients are needed are the main objectives of drug delivery systems. The development of systems for targeted, organ-specific and controlled delivery of medicinal, prophylactic and diagnostic agents is currently a relevant area of research for pharmacy and medicine. Of particular interest is the actual problem of increasing the frequency of manifestations of side effects of drugs. The side effect of drugs, their low efficiency is often explained by the inaccessibility of drugs directly to the target. Text. Currently, targeted delivery of chemotherapeutic agents and drug delivery systems has completely changed the tactics and approaches in the drug treatment of cancer, allowing to reduce the side effects of the drug and generally increase the effectiveness of the course of treatment. This paper summarizes and systematizes information about targeted systems for drug delivery of antitumor activity, described in the scientific literature and used in pharmacy and medicine. Most of the methods for obtaining cellular forms of toxic drugs discussed in this review are still at the development stage, and some methods are gradually finding practical application abroad in medicine and other fields. Vincristine (VCR) and vinblastine (VBL) are the most widely used and effective drugs in chemotherapeutic practice. Despite their effectiveness against various oncological diseases, there are a number of harmful side effects that limit the widespread use of these drugs. Conclusion. There is the possibility of using cellular carriers as a VCR and VBL delivery system. In scientific publications, there is still no data on the use of cellular carriers for encapsulating VCR and VBL. Therefore, relevant studies are devoted to the possibility of using cellular carriers to reduce side effects, improve efficiency, and develop dosage forms for the delivery of VCR and VBL to pathological foci. This topic is currently being actively developed by members of the Department of Pharmaceutical Chemistry and Pharmaceutical Technology, Pharmaceutical Faculty, Voronezh State University.


2020 ◽  
Vol 27 (8) ◽  
pp. 1308-1336 ◽  
Author(s):  
Inese Mierina ◽  
Reinis Vilskersts ◽  
Māris Turks

Birch-bark triterpenoids and their semi-synthetic derivatives possess a wide range of biological activities including cytotoxic effects on various tumor cell lines. However, due to the low solubility and bioavailability, their medicinal applications are rather limited. The use of various nanotechnology-based drug delivery systems is a rapidly developing approach to the solubilization of insufficiently bioavailable pharmaceuticals. Herein, the drug delivery systems deemed to be applicable for birch-bark triterpenoid structures are reviewed. The aforementioned disadvantages of birch-bark triterpenoids and their semi-synthetic derivatives can be overcome through their incorporation into organic nanoparticles, which include various dendrimeric systems, as well as embedding the active compounds into polymer matrices or complexation with carbohydrate nanoparticles without covalent bonding. Some of the known triterpenoid delivery systems consist of nanoparticles featuring inorganic cores covered with carbohydrates or other polymers. Methods for delivering the title compounds through encapsulation and emulsification into lipophilic media are also suitable. Besides, the birch-bark triterpenoids can form self-assembling systems with increased bio-availability. Even more, the self-assembling systems are used as carriers for delivering other chemotherapeutic agents. Another advantage besides increased bioavailability and anticancer activity is the reduced overall systemic toxicity in most of the cases, when triterpenoids are delivered with any of the carriers.


Sign in / Sign up

Export Citation Format

Share Document