scholarly journals Antiviral Therapeutic Potential of Curcumin: An Update

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6994
Author(s):  
Abdollah Ardebili ◽  
Mohammad Hassan Pouriayevali ◽  
Sahar Aleshikh ◽  
Marziyeh Zahani ◽  
Mehdi Ajorloo ◽  
...  

The treatment of viral disease has become a medical challenge because of the increasing incidence and prevalence of human viral pathogens, as well as the lack of viable treatment alternatives, including plant-derived strategies. This review attempts to investigate the trends of research on in vitro antiviral effects of curcumin against different classes of human viral pathogens worldwide. Various electronic databases, including PubMed, Scopus, Web of Science, and Google Scholar were searched for published English articles evaluating the anti-viral activity of curcumin. Data were then extracted and analyzed. The forty-three studies (published from 1993 to 2020) that were identified contain data for 24 different viruses. The 50% cytotoxic concentration (CC50), 50% effective/inhibitory concentration (EC50/IC50), and stimulation index (SI) parameters showed that curcumin had antiviral activity against viruses causing diseases in humans. Data presented in this review highlight the potential antiviral applications of curcumin and open new avenues for further experiments on the clinical applications of curcumin and its derivatives.

Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 453 ◽  
Author(s):  
Nhan Trong Le ◽  
Duc Viet Ho ◽  
Tuan Quoc Doan ◽  
Anh Tuan Le ◽  
Ain Raal ◽  
...  

The present study aimed to determine the antimicrobial activity and chemical composition of leaves-extracted essential oil of Leoheo domatiophorus Chaowasku, D.T. Ngo and H.T. Le (L. domatiophorus), including antibacterial, antimycotic, antitrichomonas and antiviral effects. The essential oil was obtained using hydrodistillation, with an average yield of 0.34 ± 0.01% (v/w, dry leaves). There were 52 constituents as identified by GC/MS with available authentic standards, representing 96.74% of the entire leaves oil. The essential oil was comprised of three main components, namely viridiflorene (16.47%), (-)-δ-cadinene (15.58%) and γ-muurolene (8.00%). The oil showed good antimicrobial activities against several species: Gram-positive strains: Staphylococcus aureus (two strains) and Enterococcus faecalis, with Minimum Inhibitory Concentration (MIC) and Minimum Lethal Concentration (MLC) values from 0.25 to 1% (v/v); Gram-negative strains such as Escherichia coli (two strains), Pseudomonas aeruginosa (two strains) and Klebsiella pneumoniae, with MIC and MLC values between 2% and 8% (v/v); and finally Candida species, having MIC and MLC between 0.12 and 4% (v/v).Antitrichomonas activity of the oil was also undertaken, showing IC50, IC90 and MLC values of 0.008%, 0.016% and 0.03% (v/v), respectively, after 48h of incubation. The essential oil resultedin being completely ineffective against tested viruses, ssRNA+ (HIV-1, YFV, BVDV, Sb-1, CV-B4), ssRNA- (hRSVA2, VSV), dsRNA (Reo-1), and dsDNA (HSV-1, VV) viruses with EC50 values over 100 µg/mL. This is the first, yet comprehensive, scientific report about the chemical composition and pharmacological properties of the essential oil in L. domatiophorus.


Viruses ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 576 ◽  
Author(s):  
Tomomi Takano ◽  
Kumi Satoh ◽  
Tomoyoshi Doki ◽  
Taishi Tanabe ◽  
Tsutomu Hohdatsu

Feline infectious peritonitis (FIP) is a viral disease with a high morbidity and mortality by the FIP virus (FIPV, virulent feline coronavirus). Several antiviral drugs for FIP have been identified, but many of these are expensive and not available in veterinary medicine. Hydroxychloroquine (HCQ) is a drug approved by several countries to treat malaria and immune-mediated diseases in humans, and its antiviral effects on other viral infections (e.g., SARS-CoV-2, dengue virus) have been confirmed. We investigated whether HCQ in association with interferon-ω (IFN-ω) is effective for FIPV in vitro. A total of 100 μM of HCQ significantly inhibited the replication of types I and II FIPV. Interestingly, the combination of 100 μM of HCQ and 104 U/mL of recombinant feline IFN-ω (rfIFN-ω, veterinary registered drug) increased its antiviral activity against type I FIPV infection. Our study suggested that HCQ and rfIFN-ω are applicable for treatment of FIP. Further clinical studies are needed to verify the combination of HCQ and rIFN-ω will be effective and safe treatment for cats with FIP.


Pathogens ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 889
Author(s):  
Francisco Flávio Vieira de Assis ◽  
Nazaré Carneiro da Silva ◽  
Waldiney Pires Moraes ◽  
Lauro Euclides Soares Barata ◽  
Antonio Humberto Hamad Minervino

Cyperus articulatus L. is popularly known as priprioca. Its rhizomes are used as a medicine in the treatment of malaria in traditional medicine. Since priprioca oil is extracted for commercial purpose, we evaluated if the components from the priprioca residue can be a source of antiplasmodial active molecules. This study aimed to determine the in vitro antiplasmodial and cytotoxicity activities of the ethanolic extract of C. articulatus as an in vitro antiplasmodial agent. From the solid residue of the plant rhizomes, 40 g samples were removed and subjected to hot extraction using a Soxhlet extractor. The in vitro antiplasmodial activity was determined using the W2 and 3D7 strains of P. falciparum. The phytochemical study identified the following main compounds: corymbolone (14.25%), cyclocolorenone (9.75%), and cadalene (8.36%). The extract exhibited moderate IC50 (inhibitory concentration) against the two strains of P. falciparum: 1.21 ± 0.01 against the W2 strain and 1.10 ± 0.06 µg/mL against the 3D7 strain. Our results show the therapeutic potential of priprioca residue as a low-cost antiplasmodial agent.


F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 295 ◽  
Author(s):  
Sandeep Chakraborty ◽  
My Phu ◽  
Basuthkar J. Rao ◽  
Bjarni Asgeirsson ◽  
Abhaya M. Dandekar

The therapeutic potential ofα-helical anti-microbial peptides (AH-AMP) to combat pathogens is fast gaining prominence. Based on recently published open access software for characterizingα-helical peptides (PAGAL), we elucidate a search methodology (SCALPEL) that leverages the massive structural data pre-existing in the PDB database to obtain AH-AMPs belonging to the host proteome. We providein vitrovalidation of SCALPEL on plant pathogens (Xylella fastidiosa,Xanthomonas arboricolaandLiberibacter crescens) by identifying AH-AMPs that mirror the function and properties of cecropin B, a well-studied AH-AMP. The identified peptides include a linear AH-AMP present within the existing structure of phosphoenolpyruvate carboxylase (PPC20), and an AH-AMP mimicing the properties of the twoα-helices of cecropin B from chitinase (CHITI25). The minimum inhibitory concentration of these peptides are comparable to that of cecropin B, while anionic peptides used as control failed to show any inhibitory effect on these pathogens. Substitute therapies in place of conventional chemotherapies using membrane permeabilizing peptides like these might also prove effective to target cancer cells. The use of native structures from the same organism largely ensures that administration of such peptides will be better tolerated and not elicit an adverse immune response. We suggest a similar approach to target Ebola epitopes, enumerated using PAGAL recently, by selecting suitable peptides from the human proteome, especially in wake of recent reports of cationic amphiphiles inhibiting virus entry and infection.


F1000Research ◽  
2015 ◽  
Vol 3 ◽  
pp. 295 ◽  
Author(s):  
Sandeep Chakraborty ◽  
My Phu ◽  
Tâmara Prado de Morais ◽  
Rafael Nascimento ◽  
Luiz Ricardo Goulart ◽  
...  

The therapeutic potential ofα-helical anti-microbial peptides (AH-AMP) to combat pathogens is fast gaining prominence. Based on recently published open access software for characterizingα-helical peptides (PAGAL), we elucidate a search methodology (SCALPEL) that leverages the massive structural data pre-existing in the PDB database to obtain AH-AMPs belonging to the host proteome. We providein vitrovalidation of SCALPEL on plant pathogens (Xylella fastidiosa,Xanthomonas arboricolaandLiberibacter crescens) by identifying AH-AMPs that mirror the function and properties of cecropin B, a well-studied AH-AMP. The identified peptides include a linear AH-AMP present within the existing structure of phosphoenolpyruvate carboxylase (PPC20), and an AH-AMP mimicing the properties of the twoα-helices of cecropin B from chitinase (CHITI25). The minimum inhibitory concentration of these peptides are comparable to that of cecropin B, while anionic peptides used as control failed to show any inhibitory effect on these pathogens. Substitute therapies in place of conventional chemotherapies using membrane permeabilizing peptides like these might also prove effective to target cancer cells. The use of native structures from the same organism could possibly ensure that administration of such peptides will be better tolerated and not elicit an adverse immune response. We suggest a similar approach to target Ebola epitopes, enumerated using PAGAL recently, by selecting suitable peptides from the human proteome, especially in wake of recent reports of cationic amphiphiles inhibiting virus entry and infection.


Author(s):  
William B. McCombs ◽  
Cameron E. McCoy

Recent years have brought a reversal in the attitude of the medical profession toward the diagnosis of viral infections. Identification of bacterial pathogens was formerly thought to be faster than identification of viral pathogens. Viral identification was dismissed as being of academic interest or for confirming the presence of an epidemic, because the patient would recover or die before this could be accomplished. In the past 10 years, the goal of virologists has been to present the clinician with a viral identification in a matter of hours. This fast diagnosis has the potential for shortening the patient's hospital stay and preventing the administering of toxic and/or expensive antibiotics of no benefit to the patient.


Author(s):  
Mayson H. Alkhatib ◽  
Dalal Al-Saedi ◽  
Wadiah S. Backer

The combination of anticancer drugs in nanoparticles has great potential as a promising strategy to maximize efficacies by eradicating resistant, reduce the dosage of the drug and minimize toxicities on the normal cells. Gemcitabine (GEM), a nucleoside analogue, and atorvastatin (ATV), a cholesterol lowering agent, have shown anticancer effect with some limitations. The objective of this in vitro study was to evaluate the antitumor activity of the combination therapy of GEM and ATVencapsulated in a microemulsion (ME) formulation in the HCT116 colon cancer cells. The cytotoxicity and efficacy of the formulation were assessed by the 3- (4,5dimethylthiazole-2-yl)-2,5-diphyneltetrazolium bromide (MTT) assay. The mechanism of cell death was examined by observing the morphological changes of treated cells under light microscope, identifying apoptosis by using the ApopNexin apoptosis detection kit, and viewing the morphological changes in the chromatin structure stained with 4′,6-diamidino-2-phenylindole (DAPI) under the inverted fluorescence microscope. It has been found that reducing the concentration of GEM loaded on ME (GEM-ME) from 5μM to 1.67μM by combining it with 3.33μM of ATV in a ME formulation (GEM/2ATV-ME) has preserved the strong cytotoxicity of GEM-ME against HCT116 cells. The current study proved that formulating GEM with ATV in ME has improved the therapeutic potential of GEM and ATV as anticancer drugs.


2018 ◽  
Vol 8 (3) ◽  
pp. 193 ◽  
Author(s):  
Rosa Martha Perez Gutierrez ◽  
Alethia Muñiz-Ramirez ◽  
Abraham Heriberto Garcia Campoy ◽  
Jose Maria Mota Flores ◽  
Sergio Odin Flores

Background: The health benefits of edible plants have been widely investigated and disseminated. However, only polyphenols have been found to have sufficient therapeutic potential to be considered in clinical trials. Fewer manuscripts have other applications such as prospective health benefits and disease treatment. Other components of edible plants are responsible for a range of other benefits including antimalarial, burns, flu, cancer, inflammation, diabetes, glycation, antimicrobial, prevention of neurodegeneration, analgesic, antimigraine activity, sedative activities, etc. Accordingly, the public needs to be informed of the potential edible plants have to act on different targets and maintain better control over diabetes compared to commercial drugs which can be toxic, have side effects, do not have the capacity to maintain blood glucose at normal levels, and do not protect the patient from the complications of diabetes over time. Consequently, edible plants, such as Apium graveolen, which have therapeutic targets on AGEs formation, are potentially a better alternative treatment for diabetes.Methods: The leaves of celery were extracted with methanol (CM). Polyphenols contents in CM were investigated by liquid chromatography-electrospray ionization mass. The ability of the compounds to inhibit formation of AGEs was evaluated in vitro models using formation of AGE fluorescence intensity, level of fructosamine, Nε-(carboxymethyl)lysine (CML), methylglyoxal (MG)-derived protein, and formation of amyloid cross β structure. Protein-oxidation was determined by thiol group and protein carbonyl content. Inhibition of MG-derived AGEs and MG-trapping ability were also measured. Additionally, insulin production was determined in methylglyoxal-treated pancreatic RINm5F cells assay. Results: Apigenin, kaempferol, apiin, rutin, caffeic acid, ferulic acid, chlorogenic acid, coumaroylquinic acid, and p-coumaric acid were the major polyphenols contained in CM. In all the model tests CM displayed potent AGE inhibitory activity, suggesting that CM delayed the three stages of glycation. Accordingly, the mechanisms of action of celery involving dicarbonyl trapping and breaking the crosslink structure in the AGEs formed may contribute to the protection of pancreatic RINm5F cells against MG conditions.Conclusion: These findings indicate that CM have an excellent anti-glycation effect which may be beneficial for future development of antiglycating agents for the treatment of diabetes.Keywords: Apium graveolens, anti-glycation, polyphenols methylglyoxal, insulin, pancreatic cells


Author(s):  
Sudhakar Sekar ◽  
Shee Sim May

The aim of the study is to formulate a modified release chitosan nanoparticles for the oral delivery of atorvastatin and to study the in vitro release of atorvastatin from chitosan nanoparticles. Atorvastatin-loaded chitosan nanoparticles were prepared with different concentration of cross-linking agent (glutaraldehyde) by emulsion interfacial reaction method. The formed nanoparticles were characterized in terms of size and morphological characteristics by scanning electron microscopy (SEM) and transmission electron microscope (TEM). Spherical and regular nanoparticles with the size range of 100-250nm were formed. Atorvastatin encapsulation efficiency of nanoparticles was found to be highest in ANP3, followed by ANP2 and ANP1. The in vitro release of atorvastatin was studied by membrane diffusion technique. The resulted cumulative percentage of drug released for ANP1, ANP2 and ANP3 were 60.08%, 34.81% and 20.39% respectively. Through this study, the nanoparticles preparation technique has shown to be a promising approach for enhancing the dissolution of hydrophobic drugs like atorvastatin calcium. The application of this novel delivery system offers good therapeutic potential in the management of hypercholesterolemia and dyslipidemia.


Sign in / Sign up

Export Citation Format

Share Document