scholarly journals Leucosceptoside A from Devil’s Claw Modulates Psoriasis-like Inflammation via Suppression of the PI3K/AKT Signaling Pathway in Keratinocytes

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 7014
Author(s):  
Ivanka K. Koycheva ◽  
Liliya V. Mihaylova ◽  
Monika N. Todorova ◽  
Zhivka P. Balcheva-Sivenova ◽  
Kalina Alipieva ◽  
...  

Psoriasis is a chronic inflammatory skin condition characterized by abnormal keratinocyte proliferation and differentiation that is accompanied with dysregulated immune response and abnormal vascularization. Devil’s claw (Harpagophytum procumbens (Burch.) DC. ex Meisn.) tubers extract has been used both systemically and topically for treatment of chronic inflammatory diseases such as arthritis, osteoporosis, inflammatory bowel disease, among others. However, its potential mechanisms of action against psoriasis remains poorly investigated. The human keratinocyte HaCaT cell line is a well-accepted in vitro model system for inflammatory skin disorders such as psoriasis. The present study involved an exploration of the effect of biotechnologically produced H. procumbens (HP) cell suspension extract and pure phenylethanoid glycosides verbascoside (VER) and leucosceptoside A (LEU) in interferon (IFN)-γ/interleukin (IL)-17A/IL-22-stimulated HaCaT cells as a model of psoriasis-like inflammation. Changes in key inflammatory signaling pathways related to psoriasis development were detected by reverse transcription polymerase chain reaction and western blotting. Treatment with LEU, but not VER and HP extract improved psoriasis-related inflammation via suppression of the PI3K/AKT signaling in IFN-γ/IL-17A/IL-22-stimulated HaCaT cells. Our results suggest that LEU may exhibit therapeutic potential against psoriasis by regulating keratinocyte differentiation through inhibition of the PI3K/AKT pathway.

2021 ◽  
Vol 22 (12) ◽  
pp. 6428
Author(s):  
Hanon Lee ◽  
Dong Hun Lee ◽  
Jang-Hee Oh ◽  
Jin Ho Chung

Skullcapflavone II (SFII), a flavonoid derived from Scutellaria baicalensis, has been reported to have anti-inflammatory properties. However, its therapeutic potential for skin inflammatory diseases and its mechanism are unknown. Therefore, this study aimed to investigate the effect of SFII on TNF-α/IFN-γ-induced atopic dermatitis (AD)-associated cytokines, such as thymus- and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC). Co-stimulation with TNF-α/IFN-γ in HaCaT cells is a well-established model for induction of pro-inflammatory cytokines. We treated cells with SFII prior to TNF-α/IFN-γ-stimulation and confirmed that it significantly inhibited TARC and MDC expression at the mRNA and protein levels. Additionally, SFII also inhibited the expression of cathepsin S (CTSS), which is associated with itching in patients with AD. Using specific inhibitors, we demonstrated that STAT1, NF-κB, and p38 MAPK mediate TNF-α/IFN-γ-induced TARC and MDC, as well as CTSS expression. Finally, we confirmed that SFII significantly suppressed TNF-α/IFN-γ-induced phosphorylation of STAT1, NF-κB, and p38 MAPK. Taken together, our study indicates that SFII inhibits TNF-α/IFN-γ-induced TARC, MDC, and CTSS expression by regulating STAT1, NF-κB, and p38 MAPK signaling pathways.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1230
Author(s):  
Sumin Pyeon ◽  
Ok-Kyung Kim ◽  
Ho-Geun Yoon ◽  
Shintae Kim ◽  
Kyung-Chul Choi ◽  
...  

Atopic dermatitis (AD) is a chronic inflammatory skin disease caused by immune hypersensitivity reaction. The cause of AD is unclear, but its symptoms have a negative effect on quality of life; various treatment methods to alleviate these symptoms are underway. In the present study, we aimed to evaluate in vitro antioxidant and anti-inflammatory effects of Rubus coreanus water extract (RCW) on AD. Total phenolic compounds and flavonoid content of RCW were 4242.40 ± 54.84 mg GAE/g RCE and 1010.99 ± 14.75 mg CE/g RCW, respectively. RCW reduced intracellular reactive oxygen species level and increased the action of antioxidant enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase in tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ)-stimulated HaCaT cells. Moreover, mRNA expression of the pro-inflammatory cytokines, including TNF-α, interleukin-1β, and interleukin-6, was downregulated by RCW in the TNF-α/IFN-γ-stimulated cells. The levels of inflammatory chemokines (thymus- and activation-regulated chemokine; eotaxin; macrophage-derived chemokine; regulated on activation, normal T-cell expressed and secreted; and granulocyte-macrophage colony-stimulating factor) and intercellular adhesion molecule-1 were decreased in the TNF-α/IFN-γ-stimulated HaCaT cells after RCW treatment. Additionally, the mRNA expression levels of filaggrin and involucrin, proteins that form the skin, were increased by RCW. Furthermore, RCW inhibited the nuclear factor kappa-light-chain-enhancer of the activated B cells pathway in the TNF-α/IFN-γ-stimulated HaCaT cells. Collectively, the present investigation indicates that RCW is a potent substance that inhibits AD.


2021 ◽  
Vol 22 (15) ◽  
pp. 8237
Author(s):  
Chung-Chi Yang ◽  
Yen-Ling Hung ◽  
Wen-Chin Ko ◽  
Yi-Ju Tsai ◽  
Jia-Feng Chang ◽  
...  

Atopic dermatitis (AD) is a chronic and persistent inflammatory skin disease characterized by eczematous lesions and itching, and it has become a serious health problem. However, the common clinical treatments provide limited relief and are accompanied by adverse effects. Therefore, there is a need to develop novel and effective therapies to treat AD. Neferine is a small molecule compound isolated from the green embryo of the mature seeds of lotus (Nelumbo nucifera). It has a bisbenzylisoquinoline alkaloid structure. Relevant studies have shown that neferine has many pharmacological and biological activities, including anti-inflammatory, anti-thrombotic, and anti-diabetic activities. However, there are very few studies on neferine in the skin, especially the related effects on inflammatory skin diseases. In this study, we proved that it has the potential to be used in the treatment of atopic dermatitis. Through in vitro studies, we found that neferine inhibited the expression of cytokines and chemokines in TNF-α/IFN-γ-stimulated human keratinocyte (HaCaT) cells, and it reduced the phosphorylation of MAPK and the NF-κB signaling pathway. Through in vivo experiments, we used 2,4-dinitrochlorobenzene (DNCB) to induce atopic dermatitis-like skin inflammation in a mouse model. Our results show that neferine significantly decreased the skin barrier damage, scratching responses, and epidermal hyperplasia induced by DNCB. It significantly decreased transepidermal water loss (TEWL), erythema, blood flow, and ear thickness and increased surface skin hydration. Moreover, it also inhibited the expression of cytokines and the activation of signaling pathways. These results indicate that neferine has good potential as an alternative medicine for the treatment of atopic dermatitis or other skin-related inflammatory diseases.


2021 ◽  
Vol 22 (19) ◽  
pp. 10777
Author(s):  
Donghee Kim ◽  
Hyo-Jin Kim ◽  
Jin-Ok Baek ◽  
Joo-Young Roh ◽  
Hee-Sook Jun

Psoriasis is a chronic inflammatory skin disease. Recently, lysophosphatidic acid (LPA)/LPAR5 signaling has been reported to be involved in both NLRP3 inflammasome activation in macrophages and keratinocyte activation to produce inflammatory cytokines, contributing to psoriasis pathogenesis. However, the effect and molecular mechanisms of LPA/LPAR signaling in keratinocyte proliferation in psoriasis remain unclear. In this study, we investigated the effects of LPAR1/3 inhibition on imiquimod (IMQ)-induced psoriasis-like mice. Treatment with the LPAR1/3 antagonist, ki16425, alleviated skin symptoms in IMQ-induced psoriasis-like mouse models and decreased keratinocyte proliferation in the lesion. It also decreased LPA-induced cell proliferation and cell cycle progression via increased cyclin A2, cyclin D1, cyclin-dependent kinase (CDK)2, and CDK4 expression and decreased p27Kip1 expression in HaCaT cells. LPAR1 knockdown in HaCaT cells reduced LPA-induced proliferation, suppressed cyclin A2 and CDK2 expression, and restored p27Kip1 expression. LPA increased Rho-associated protein kinase 2 (ROCK2) expression and PI3K/AKT activation; moreover, the pharmacological inhibition of ROCK2 and PI3K/AKT signaling suppressed LPA-induced cell cycle progression. In conclusion, we demonstrated that LPAR1/3 antagonist alleviates IMQ-induced psoriasis-like symptoms in mice, and in particular, LPAR1 signaling is involved in cell cycle progression via ROCK2/PI3K/AKT pathways in keratinocytes.


2021 ◽  
Author(s):  
Moataz Dowaidar

HMGB1, the second most prevalent protein inside the nucleus after histone, has sparked a lot of attention as a model DAMP molecule involved in inflammation, inflammatory diseases, and cancer. Building on the fundamental knowledge of HMGB1 as a cytokine/chemoattractant, several in vivo and in vitro studies have indicated therapeutic potential for targeting HMGB1 and lowering tissue damage once inflammation has gone awry. A few hurdles must be cleared before HMGB1 treatment may progress further into clinical trials. The exact mechanism by which HMGB1 travels from the nucleus to the cytoplasm and then to the ECM is unclear. Different HMGB1 redox states can generate in situ modulations, making it difficult to determine the specific function of HMGB1 isoforms. Furthermore, the investigation of HMGB1 and its antagonists in disease situations is complicated by various HMGB1 receptors with various degrees of cell selectivity for a certain HMGB1 isoform or HMGB1 cofactor complex. HMGB1 targeting has been found to be beneficial in the treatment of inflammation and inflammatory diseases, notably in sepsis, sterile inflammation, autoimmune diseases, and cancer, despite the difficulties. Continued HMGB1 research might help fill in the gaps in knowledge and push HMGB1 antagonists closer to the next step of clinical testing.


Blood ◽  
2021 ◽  
Author(s):  
Roger Belizaire ◽  
Sebastian Hassan John Koochaki ◽  
Namrata D. Udeshi ◽  
Alexis Vedder ◽  
Lei Sun ◽  
...  

CBL encodes an E3 ubiquitin ligase and signaling adaptor that regulates receptor and non-receptor tyrosine kinases. Recurrent CBL mutations occur in myeloid neoplasms, including 10-20% of chronic myelomonocytic leukemia (CMML) cases, and selectively disrupt the protein's E3 ubiquitin ligase activity. CBL mutations have been associated with poor prognosis, but the oncogenic mechanisms and therapeutic implications of CBL mutations remain incompletely understood. We combined functional assays and global mass spectrometry to define the phosphoproteome, CBL interactome, and mechanism of signaling activation in a panel of cell lines expressing an allelic series of CBL mutations. Our analyses revealed that increased LYN activation and interaction with mutant CBL are key drivers of enhanced CBL phosphorylation, PIK3R1 recruitment, and downstream PI3K/AKT signaling in CBL-mutant cells. Signaling adaptor domains of CBL, including the tyrosine-kinase binding domain, proline-rich region, and C-terminal phosphotyrosine sites, were all required for the oncogenic function of CBL mutants. Genetic ablation or dasatinib-mediated inhibition of LYN reduced CBL phosphorylation, CBL-PIK3R1 interaction, and PI3K/AKT signaling. Furthermore, we demonstrated in vitro and in vivo antiproliferative efficacy of dasatinib in CBL-mutant cell lines and primary CMML. Overall, these mechanistic insights into the molecular function of CBL mutations provide rationale to explore the therapeutic potential of LYN inhibition in CBL-mutant myeloid malignancies.


2017 ◽  
Vol 65 (7) ◽  
pp. 1084-1088 ◽  
Author(s):  
Xiao-Jing Yu ◽  
Tie-Jun Song ◽  
Lu-Wei Zhang ◽  
Ying Su ◽  
Ke-Yu Wang ◽  
...  

Psoriasis is a chronic skin disease characterized by abnormal keratinocyte proliferation and differentiation, inflammation, and angiogenesis. Overexpression of tribbles homolog3 (TRB3), which belongs to the tribbles family of pseudokinases, has been found in several human tumors and metabolic diseases, but its role in psoriasis has not been fully clarified. The aim of this study is to investigate the expression of TRB3 in psoriasis and explore its roles in the proliferation of keratinocytes. Twenty-four patients with psoriasis vulgaris were recruited for the study. Diagnosis of psoriasis was based on clinical and histologic examinations. Immunohistochemistry and real-time reverse transcription PCR (RT-PCR) were performed to determine protein and messenger RNA (mRNA) expression of TRB3 in psoriasis lesions. 5-Bromo-2-deoxyUridine (BrdU) incorporation assay were performed for cell proliferation. Cell cycle distribution was assessed by flow cytometry analysis. The levels of TRB3 is elevated in psoriatic lesions compared with psoriatic non-lesions. The HaCat cells expressed the TRB3 gene. We found TRB3 silencing to significantly inhibit HaCat cell proliferation. Furthermore, the specific knockdown of TRB3 slowed down the cell cycle at the gap 0/first gap phase. In conclusion, our data suggest that TRB3 is overexpressed in lesions of patients with psoriasis and may be involved in the abnormal proliferation of keratinocytes. Therefore, TRB3 may be a potential therapeutic target for psoriasis.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Mouna Moutia ◽  
Norddine Habti ◽  
Abdallah Badou

Allium Sativum L. (garlic), which is a species of the onion family, Alliaceae, is one of the most used plants in traditional medicine worldwide. More than 200 chemicals with diverse properties have been found in garlic extracts. Several garlic compounds were suggested to be efficient in improving various pathologies including certain types of cancer. This paper is an overview of data about garlic biological activities in vitro and/or in vivo on immune cells, on the development of certain inflammatory diseases, and on different types of carcinomas and sarcomas. Garlic and its compounds were found to have notable antioxidant properties. Garlic therapeutic potential has also been studied in several inflammatory diseases such as allergic-airway inflammation, inflammatory bowel disease, arthritic rheumatism, and atherosclerosis. Furthermore, garlic was found to be able to maintain the immune system homeostasis and to exhibit beneficial effects on immune cells especially through regulation of proliferation and cytokine gene expression. Finally, we will show how major garlic components such as sulfur compounds and polyphenols might be responsible for the garlic biological activities revealed in different situations. If identified, specific compounds present in garlic could potentially be used in therapy.


Author(s):  
Pio Conti ◽  
Fabrizio Pregliasco ◽  
Rosa G. Bellomo ◽  
Carla E. Gallenga ◽  
Alessandro Caraffa ◽  
...  

Psoriasis (PS) is an autoimmune skin disease mediated by immune cells that typically presents inflammatory erythematous plaques, and it is associated with many comorbidities. PS exhibits excessive keratinocyte proliferation, and a high number of immune cells including macrophages, neutrophils, Th1 and Th17 lymphocytes, and mast cells (MCs). MCs are of hematopoietic origin, derived from bone marrow cells, which migrate, mature and reside in vascularized tissues. They can be activated by antigen provoking overexpression of pro-inflammatory cytokines and release a number of mediators including interleukin (IL)-1 and IL-33. IL-1, released by activated keratinocytes and MCs, stimulates skin macrophage to release IL-36, a powerful pro-inflammatory IL-1 family member. IL-36 mediates both innate and adaptive immunity, including chronic pro-inflammatory diseases such as psoriasis. Suppressing IL-36 results in a noticeable improvement in the treatment of psoriasis. IL-36 is inhibited by IL-36Ra which binds on to IL-36 receptor ligand, but suppression can also occur by binding IL-38 to the IL-36R receptor. IL-38 specifically binds only to IL-36R and inhibits human mononuclear cells stimulated with IL-36 in vitro, sharing the effect with IL-36Ra. Here, we report that inflammation in psoriasis is mediated by IL-1 generated by MCs, a process that activates macrophages to secrete pro-inflammatory IL-36 inhibited by IL-38. In this article we confirm that IL-38 and IL-37 cytokines emerge as inhibitors of inflammation in psoriasis and hold promise of an innovative therapeutic tool.


Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4387
Author(s):  
Jonghwan Jegal ◽  
Tae-Young Kim ◽  
No-June Park ◽  
Beom-Geun Jo ◽  
Geon-A. Jo ◽  
...  

Plants of the genus Wikstroemia are traditionally used in China to treat various inflammatory diseases. The purpose of this study was to isolate the components of Wikstroemia ganpi (Siebold & Zucc.) Maxim., to evaluate their anti-atopic activities and to identify candidates with anti-atopic therapeutics. A total of 24 compounds were isolated by bioassay-guided separation, including one novel compound, which was tilianin 5-methyl ether. The anti-atopic activities of the isolated compounds were determined using TNF-α-treated RBL-2H3 cells and HaCaT cells. The mRNA expressions of IL-4, IL-6, GM-CSF, G-CSF and TRPV1 were reduced by luteolin 7-methyl ether. The study shows that the luteolin 7-methyl ether isolated from W. ganpi is a potential therapeutic agent for the treatment of atopic dermatitis.


Sign in / Sign up

Export Citation Format

Share Document