scholarly journals Prospects of Curcumin Nanoformulations in Cancer Management

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 361
Author(s):  
Hilda Amekyeh ◽  
Enas Alkhader ◽  
Rayan Sabra ◽  
Nashiru Billa

There is increasing interest in the use of natural compounds with beneficial pharmacological effects for managing diseases. Curcumin (CUR) is a phytochemical that is reportedly effective against some cancers through its ability to regulate signaling pathways and protein expression in cancer development and progression. Unfortunately, its use is limited due to its hydrophobicity, low bioavailability, chemical instability, photodegradation, and fast metabolism. Nanoparticles (NPs) are drug delivery systems that can increase the bioavailability of hydrophobic drugs and improve drug targeting to cancer cells via different mechanisms and formulation techniques. In this review, we have discussed various CUR-NPs that have been evaluated for their potential use in treating cancers. Formulations reviewed include lipid, gold, zinc oxide, magnetic, polymeric, and silica NPs, as well as micelles, dendrimers, nanogels, cyclodextrin complexes, and liposomes, with an emphasis on their formulation and characteristics. CUR incorporation into the NPs enhanced its pharmaceutical and therapeutic significance with respect to solubility, absorption, bioavailability, stability, plasma half-life, targeted delivery, and anticancer effect. Our review shows that several CUR-NPs have promising anticancer activity; however, clinical reports on them are limited. We believe that clinical trials must be conducted on CUR-NPs to ensure their effective translation into clinical applications.

2014 ◽  
pp. 98-101
Author(s):  
Thi Bich Hien Le ◽  
Viet Duc Ho ◽  
Thi Hoai Nguyen

Nowadays, cancer treatment has been a big challenge to healthcare systems. Most of clinical anti-cancer therapies are toxic and cause adverse effects to human body. Therefore, current trend in science is seeking and screening of natural compounds which possess antineoplastic activities to utilize in treatment. Uvaria L. - Annonaceae includes approximately 175 species spreading over tropical areas of Asia, Australia, Africa and America. Studies on chemical compositions and pharmacological effects of Uvaria showed that several compound classes in this genus such as alkaloid, flavonoid, cyclohexen derivaties, acetogenin, steroid, terpenoid, etc. indicate considerable biological activities, for example anti-tumor, anti-cancer, antibacterial, antifungal, antioxidant, etc. Specifically, anti-cancer activity of fractions of extract and pure isolated compounds stands out for cytotoxicity against many cancer cell lines. This study provides an overview of anti-cancer activity of Uvaria and suggests a potential for further studies on seeking and developing novel anti-cancer compounds. Key words: Anti-cancer, Uvaria.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3939 ◽  
Author(s):  
Qin Shu ◽  
Jianan Wu ◽  
Qihe Chen

As a novel natural compound delivery system, liposomes are capable of incorporating lipophilic bioactive compounds with enhanced compound solubility, stability and bioavailability, and have been successfully translated into real-time clinical applications. To construct the soy phosphatidylcholine (SPC)–cholesterol (Chol) liposome system, the optimal formulation was investigated as 3:1 of SPC to Chol, 10% mannosylerythritol lipid-A (MEL-A) and 1% betulinic acid. Results show that liposomes with or without betulinic acid or MEL-A are able to inhibit the proliferation of HepG2 cells with a dose-effect relation remarkably. In addition, the modification of MEL-A in liposomes can significantly promote cell apoptosis and strengthen the destruction of mitochondrial membrane potential in HepG2 cells. Liposomes containing MEL-A and betulinic acid have exhibited excellent anticancer activity, which provide factual basis for the development of MEL-A in the anti-cancer applications. These results provide a design thought to develop delivery liposome systems carrying betulinic acid with enhanced functional and pharmaceutical attributes.


2018 ◽  
Vol 20 ◽  
Author(s):  
Ana Barbosa ◽  
Ana Peixoto ◽  
Pedro Pinto ◽  
Manuela Pinheiro ◽  
Manuel R. Teixeira

AbstractCirculating cell-free DNA (cfDNA) consists of small fragments of DNA that circulate freely in the bloodstream. In cancer patients, a fraction of cfDNA is derived from tumour cells, therefore containing the same genetic and epigenetic alterations, and is termed circulating cell-free tumour DNA. The potential use of cfDNA, the so-called ‘liquid biopsy’, as a non-invasive cancer biomarker has recently received a lot of attention. The present review will focus on studies concerning the potential clinical applications of cfDNA in ovarian cancer patients.


Gels ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 20 ◽  
Author(s):  
Sobhan Ghaeini-Hesaroeiye ◽  
Hossein Razmi Bagtash ◽  
Soheil Boddohi ◽  
Ebrahim Vasheghani-Farahani ◽  
Esmaiel Jabbari

Nanogels, or nanostructured hydrogels, are one of the most interesting materials in biomedical engineering. Nanogels are widely used in medical applications, such as in cancer therapy, targeted delivery of proteins, genes and DNAs, and scaffolds in tissue regeneration. One salient feature of nanogels is their tunable responsiveness to external stimuli. In this review, thermosensitive nanogels are discussed, with a focus on moieties in their chemical structure which are responsible for thermosensitivity. These thermosensitive moieties can be classified into four groups, namely, polymers bearing amide groups, ether groups, vinyl ether groups and hydrophilic polymers bearing hydrophobic groups. These novel thermoresponsive nanogels provide effective drug delivery systems and tissue regeneration constructs for treating patients in many clinical applications, such as targeted, sustained and controlled release.


Drug Research ◽  
2020 ◽  
Author(s):  
Md. Habban Akhter ◽  
Md. Rizwanullah ◽  
Javed Ahmad ◽  
Saima Amin ◽  
Mohammad Zaki Ahmad ◽  
...  

AbstractGlioblastoma multiforme (GBM) is the most aggressive and fatal CNS related tumors, which is responsible for about 4% of cancer-related deaths. Current GBM therapy includes surgery, radiation, and chemotherapy. The effective chemotherapy of GBM is compromised by two barriers, i. e., the blood-brain barrier (BBB) and the blood tumor barrier (BTB). Therefore, novel therapeutic approaches are needed. Nanoparticles are one of the highly efficient drug delivery systems for a variety of chemotherapeutics that have gained massive attention from the last three decades. Perfectly designed nanoparticles have the ability to cross BBB and BTB and precisely deliver the chemotherapeutics to GBM tissue/cells. Nanoparticles can encapsulate both hydrophilic and lipophilic drugs, genes, proteins, and peptides, increase the stability of drugs by protecting them from degradation, improve plasma half-life, reduce adverse effects and control the release of drugs/genes at the desired site. This review focussed on the different signaling pathways altered in GBM cells to understand the rationale behind selecting new therapeutic targets, challenges in the drug delivery to the GBM, various transport routes in brain delivery, and recent advances in targeted delivery of different drug and gene loaded various lipidic, polymeric and inorganic nanoparticles in the effective management of GBM.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 543 ◽  
Author(s):  
Okhil K. Nag ◽  
James B. Delehanty

Nanoparticle (NP)-mediated drug delivery (NMDD) for active targeting of diseases is a primary goal of nanomedicine. NPs have much to offer in overcoming the limitations of traditional drug delivery approaches, including off-target drug toxicity and the need for the administration of repetitive doses. In the last decade, one of the main foci in NMDD has been the realization of NP-mediated drug formulations for active targeted delivery to diseased tissues, with an emphasis on cellular and subcellular targeting. Advances on this front have included the intricate design of targeted NP-drug constructs to navigate through biological barriers, overcome multidrug resistance (MDR), decrease side effects, and improve overall drug efficacy. In this review, we survey advancements in NP-mediated drug targeting over the last five years, highlighting how various NP-drug constructs have been designed to achieve active targeted delivery and improved therapeutic outcomes for critical diseases including cancer, rheumatoid arthritis, and Alzheimer’s disease. We conclude with a survey of the current clinical trial landscape for active targeted NP-drug delivery and how we envision this field will progress in the near future.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Lili He ◽  
Zhenghui Shang ◽  
Hongmei Liu ◽  
Zhi-xiang Yuan

As an acidic, ocean colloid polysaccharide, alginate is both a biopolymer and a polyelectrolyte that is considered to be biocompatible, nontoxic, nonimmunogenic, and biodegradable. A significant number of studies have confirmed the potential use of alginate-based platforms as effective vehicles for drug delivery for cancer-targeted treatment. In this review, the focus is on the formation of alginate-based cancer-targeted delivery systems. Specifically, some general chemical and physical properties of alginate and different types of alginate-based delivery systems are discussed, and various kinds of alginate-based carriers are introduced. Finally, recent innovative strategies to functionalize alginate-based vehicles for cancer targeting are described to highlight research towards the optimization of alginate.


2020 ◽  
Vol 11 ◽  
Author(s):  
Feng Zhao ◽  
Ping Wang ◽  
Yuanyuan Jiao ◽  
Xiaoxiao Zhang ◽  
Daquan Chen ◽  
...  

Hydroxysafflower yellow A (HSYA), as a principal natural ingredient extracted from safflower (Carthamus tinctorius L.), has significant pharmacological activities, such as antioxidant, anti-inflammatory, anticoagulant, and anticancer effects. However, chemical instability and low bioavailability have been severely hampering the clinical applications of HSYA during the treatment of cardiovascular and cerebrovascular disease. Therefore, this present review systematically summarized the materials about HSYA, including acquisition methods, extraction and detection methods, pharmacokinetics, pharmacological effects and molecular mechanism, especially focus on the possible causes and resolutions about the chemical instability and low bioavailability of HSYA, in order to provide relatively comprehensive basic data for the related research of HSYA.


Sign in / Sign up

Export Citation Format

Share Document