scholarly journals Deagglomeration of Ultrafine Hydrophilic Nanopowder Using Low-Frequency Pulsed Fluidization

Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 388 ◽  
Author(s):  
Ebrahim H. Al-Ghurabi ◽  
Mohammed Shahabuddin ◽  
Nadavala Siva Kumar ◽  
Mohammad Asif

Low-frequency flow pulsations were utilized to improve the hydrodynamics of the fluidized bed of hydrophilic ultrafine nanosilica powder with strong agglomeration behavior. A gradual fluidization of unassisted fluidized bed through stepwise velocity change was carried out over a wide range of velocities followed by a gradual defluidization process. Bed dynamics in different regions of the fluidized bed were carefully monitored using fast and sensitive pressure transducers. Next, 0.05-Hz square-wave flow pulsation was introduced, and the fluidization behavior of the pulsed fluidized bed was rigorously characterized to delineate its effect on the bed hydrodynamics by comparing it with one of the unassisted fluidized bed. Flow pulsations caused a substantial decrease in minimum fluidization velocity and effective agglomerate diameter. The frequencies and amplitudes of various events in different fluidized bed regions were determined by performing frequency domain analysis on real-time bed transient data. The pulsations and their effects promoted deagglomeration and improved homogeneity of the pulsed fluidized bed.

Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 807 ◽  
Author(s):  
Mohammad Asif ◽  
Ebrahim H. Al-Ghurabi ◽  
Abdelhamid Ajbar ◽  
Nadavala Siva Kumar

The processing of fine and ultrafine particles using a fluidized bed is challenging in view of their unpredictable hydrodynamic behavior due to interparticle forces. The use of assisted fluidization techniques in such cases can be effective in improving the bed hydrodynamics. This work investigates the dynamics of pulsed fluidized bed of ultrafine nanosilica subjected to square-wave flow pulsations. The pulse duration used in this study is sufficient to allow the complete collapse of the pulsed fluidized bed between two consecutive flow pulsations. The proposed pulsation strategy is carefully implemented using electronic mass flow controllers with the help of analog output signals from data acquisition system. Given that the different regions of the fluidized bed exhibit varying dynamics, which together contribute to overall bed dynamics, the bed transients in the upper, central, and lower regions of the fluidized bed are monitored using several sensitive pressure transducers located along the height of the bed. The effect of the flow pulsation on the hydrodynamics of the fluidized bed is rigorously characterized. A significant reduction in the minimum fluidization velocity was obtained and an increase in the bed homogeneity was observed due to flow pulsations. The frequency domain analysis of the signals clearly delineated the frequency of the various events occurring during the fluidization.


2019 ◽  
Vol 9 (3) ◽  
pp. 572 ◽  
Author(s):  
Syed Ali ◽  
Avijit Basu ◽  
Sulaiman Alfadul ◽  
Mohammad Asif

In the present study, we report the fluidization behavior of ultrafine nanopowder using the assisted fluidization technique of particle mixing, which was further superimposed with the pulsation of the inlet gas flow to the fluidized bed. The powder selected in the present study was hydrophilic nanosilica, which shows strong agglomeration behavior leading to poor fluidization hydrodynamics. For particle mixing, small proportions of inert particles of Geldart group A classification were used. The inlet gas flow to the fluidized bed was pulsed with a square wave of frequency 0.1 Hz with the help of a solenoid valve controlled using the data acquisition system (DAQ). In addition to the gas flow rate to the fluidized bed, pressure transients were carefully monitored using sensitive pressure transducers connected to the DAQ. Our results indicate a substantial reduction in the effective agglomerate size as a result of the simultaneous implementation of the assisted fluidization techniques of particle mixing and flow pulsation.


Author(s):  
Yong Zhang ◽  
Baosheng Jin ◽  
Wenqi Zhong

Fluidization, mixing and segregation of a biomass-sand mixture in a 3D gas-fluidized bed have been investigated by means of visual observation, pressure fluctuation analysis and the bed-frozen method. Three types of mixtures are considered, in which biomass is a thin long stalk, and sand belongs to the Geldart B category. Experiments are carried out in a segmented fluidized bed equipped with multiple pressure transducers. Three initial packing conditions and two experiment procedures are used. The fluidization velocity varies to cover a wide range. Results show that in the local fluidization region, the mixing and segregation patterns are sensitive to the initial packing condition. In the case of a fully segregated state with biomass at the bottom, the bed inversion can be significantly observed due to the great segregation tendency of biomass. Further analyses indicate that the mixing ratio exerts a subtle influence on the competition between mixing and segregation by disturbing the coalescence and break-up of the bubble. In addition, the pressure fluctuation signal proves to be helpful in understanding the dynamic features of the phenomenology.


2009 ◽  
Vol 23 (4) ◽  
pp. 191-198 ◽  
Author(s):  
Suzannah K. Helps ◽  
Samantha J. Broyd ◽  
Christopher J. James ◽  
Anke Karl ◽  
Edmund J. S. Sonuga-Barke

Background: The default mode interference hypothesis ( Sonuga-Barke & Castellanos, 2007 ) predicts (1) the attenuation of very low frequency oscillations (VLFO; e.g., .05 Hz) in brain activity within the default mode network during the transition from rest to task, and (2) that failures to attenuate in this way will lead to an increased likelihood of periodic attention lapses that are synchronized to the VLFO pattern. Here, we tested these predictions using DC-EEG recordings within and outside of a previously identified network of electrode locations hypothesized to reflect DMN activity (i.e., S3 network; Helps et al., 2008 ). Method: 24 young adults (mean age 22.3 years; 8 male), sampled to include a wide range of ADHD symptoms, took part in a study of rest to task transitions. Two conditions were compared: 5 min of rest (eyes open) and a 10-min simple 2-choice RT task with a relatively high sampling rate (ISI 1 s). DC-EEG was recorded during both conditions, and the low-frequency spectrum was decomposed and measures of the power within specific bands extracted. Results: Shift from rest to task led to an attenuation of VLFO activity within the S3 network which was inversely associated with ADHD symptoms. RT during task also showed a VLFO signature. During task there was a small but significant degree of synchronization between EEG and RT in the VLFO band. Attenuators showed a lower degree of synchrony than nonattenuators. Discussion: The results provide some initial EEG-based support for the default mode interference hypothesis and suggest that failure to attenuate VLFO in the S3 network is associated with higher synchrony between low-frequency brain activity and RT fluctuations during a simple RT task. Although significant, the effects were small and future research should employ tasks with a higher sampling rate to increase the possibility of extracting robust and stable signals.


Author(s):  
Baoling Guo ◽  
Seddik Bacha ◽  
Mazen Alamir ◽  
Julien Pouget

AbstractAn extended state observer (ESO)-based loop filter is designed for the phase-locked loop (PLL) involved in a disturbed grid-connected converter (GcC). This ESO-based design enhances the performances and robustness of the PLL, and, therefore, improves control performances of the disturbed GcCs. Besides, the ESO-based LF can be applied to PLLs with extra filters for abnormal grid conditions. The unbalanced grid is particularly taken into account for the performance analysis. A tuning approach based on the well-designed PI controller is discussed, which results in a fair comparison with conventional PI-type PLLs. The frequency domain properties are quantitatively analysed with respect to the control stability and the noises rejection. The frequency domain analysis and simulation results suggest that the performances of the generated ESO-based controllers are comparable to those of the PI control at low frequency, while have better ability to attenuate high-frequency measurement noises. The phase margin decreases slightly, but remains acceptable. Finally, experimental tests are conducted with a hybrid power hardware-in-the-loop benchmark, in which balanced/unbalanced cases are both explored. The obtained results prove the effectiveness of ESO-based PLLs when applied to the disturbed GcC.


Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 499 ◽  
Author(s):  
Artem Shikhovtsev ◽  
Pavel Kovadlo ◽  
Vladimir Lukin

The paper focuses on the development of the method to estimate the mean characteristics of the atmospheric turbulence. Using an approach based on the shape of the energy spectrum of atmospheric turbulence over a wide range of spatial and temporal scales, the vertical profiles of optical turbulence are calculated. The temporal variability of the vertical profiles of turbulence under different low-frequency atmospheric disturbances is considered.


Author(s):  
Walter Anderson ◽  
Constantine Ciocanel ◽  
Mohammad Elahinia

Engine vibration has caused a great deal of research for isolation to be performed. Traditionally, isolation was achieved through the use of pure elastomeric (rubber) mounts. However, with advances in vehicle technology, these types of mounts have become inadequate. The inadequacy stems from the vibration profile associated with the engine, i.e. high displacement at low frequency and small displacement at high frequency. Ideal isolation would be achieved through a stiff mount for low frequency and a soft mount for high frequency. This is contradictory to the performance of the elastomeric mounts. Hydraulic mounts were then developed to address this problem. A hydraulic mount has variable stiffness and damping due to the use of a decoupler and an inertia track. However, further advances in vehicle technology have rendered these mounts inadequate as well. Examples of these advances are hybridization (electric and hydraulic) and cylinder on demand (VCM, MDS & ACC). With these technologies, the vibration excitation has a significantly different profile, occurs over a wide range of frequencies, and calls for a new technology that can address this need. Magnetorheological (MR) fluid is a smart material that is able to change viscosity in the presence of a magnetic field. With the use of MR fluid, variable damping and stiffness can be achieved. An MR mount has been developed and tested. The performance of the mount depends on the geometry of the rubber part as well as the behavior of the MR fluid. The rubber top of the mount is the topic of this study due to its major impact on the isolation characteristics of the MR mount. To develop a design methodology to address the isolation needs of different hybrid vehicles, a geometric parametric finite element analysis has been completed and presented in this paper.


Author(s):  
Mirko Baratta ◽  
Stefano d’Ambrosio ◽  
Daniela Misul ◽  
Ezio Spessa

An experimental investigation and a burning-rate analysis have been performed on a production 1.4 liter CNG (compressed natural gas) engine fueled with methane-hydrogen blends. The engine features a pent-roof combustion chamber, four valves per cylinder and a centrally located spark plug. The experimental tests have been carried out in order to quantify the cycle-to-cycle and the cylinder-to-cylinder combustion variation. Therefore, the engine has been equipped with four dedicated piezoelectric pressure transducers placed on each cylinder and located by the spark plug. At each test point, in-cylinder pressure, fuel consumption, induced air mass flow rate, pressure and temperature at different locations on the engine intake and exhaust systems as well as ‘engine-out’ pollutant emissions have been measured. The signals correlated to the engine operation have been acquired by means of a National Instruments PXI-DAQ system and a home developed software. The acquired data have then been processed through a combustion diagnostic tool resulting from the integration of an original multizone thermodynamic model with a CAD procedure for the evaluation of the burned-gas front geometry. The diagnostic tool allows the burning velocities to be computed. The tests have been performed over a wide range of engine speeds, loads and relative air-fuel ratios (up to the lean operation). For stoichiometric operation, the addition of hydrogen to CNG has produced a bsfc reduction ranging between 2 to 7% and a bsTHC decrease up to the 40%. These benefits have appeared to be even higher for lean mixtures. Moreover, hydrogen has shown to significantly enhance the combustion process, thus leading to a sensibly lower cycle-to-cycle variability. As a matter of fact, hydrogen addition has generally resulted into extended operation up to RAFR = 1.8. Still, a discrepancy in the abovementioned conclusions was observed depending on the engine cylinder considered.


2011 ◽  
Vol 464 ◽  
pp. 749-752 ◽  
Author(s):  
Jian Hui Zhang ◽  
Xin Chen

The structure and property of pyrocarbon varies widely with different deposition conditions. The isotropic carbon which can only been deposited in the bed of fluidized particles is very important in biomedical fields, for instance, it is often used as the coating of artificial heart valve components. The deposition of isotropic pyrocarbon containing silicon is experimented in fluidized bed over a wide range of deposition conditions. The results show that bed temperature influences strongly average coating rate, coating density, silicon content and coating micro-hardness. Propane concentration has a much effect on coating density, carbon matrix density and isotropic characteristics. Total gas flow rate and inlet dimension of fluidized bed affect the formation of fluidized bed.


Sign in / Sign up

Export Citation Format

Share Document