scholarly journals Zooming in: PAGE-Northern Blot Helps to Analyze Anti-Sense Transcripts Originating from Human rIGS under Transcriptional Stress

2021 ◽  
Vol 7 (3) ◽  
pp. 50
Author(s):  
Anastasia A. Sadova ◽  
Dmitry Y. Panteleev ◽  
Galina V. Pavlova

Ribosomal intergenic spacer (rIGS), located between the 45S rRNA coding arrays in humans, is a deep, unexplored source of small and long non-coding RNA molecules transcribed in certain conditions to help a cell generate a stress response, pass through a differentiation state or fine tune the functioning of the nucleolus as a ribosome biogenesis center of the cell. Many of the non-coding transcripts originating from the rIGS are not characterized to date. Here, we confirm the transcriptional activity of the region laying a 2 kb upstream of the rRNA promoter, and demonstrate its altered expression under transcriptional stress, induced by a wide range of known transcription inhibitors. We managed to show an increased variability of anti-sense transcripts in alpha-amanitin treated cells by applying the low-molecular RNA fraction extracted from agarose gel to PAGE-northern. Also, the fractioning of RNA by size using agarose gel slices occurred, being applicable for determining the sizes of target transcripts via RT-PCR.

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 211
Author(s):  
Luis Alberto Bravo Vázquez ◽  
Mariana Yunuen Moreno Becerril ◽  
Erick Octavio Mora Hernández ◽  
Gabriela García de León Carmona ◽  
María Emilia Aguirre Padilla ◽  
...  

MicroRNAs (miRNAs) are a class of small (20–24 nucleotides), highly conserved, non-coding RNA molecules whose main function is the post-transcriptional regulation of gene expression through sequence-specific manners, such as mRNA degradation or translational repression. Since these key regulatory molecules are implicated in several biological processes, their altered expression affects the preservation of cellular homeostasis and leads to the development of a wide range of pathologies. Over the last few years, relevant investigations have elucidated that miRNAs participate in different stages of bone growth and development. Moreover, the abnormal expression of these RNA molecules in bone cells and tissues has been significantly associated with the progression of numerous bone diseases, including osteoporosis, osteosarcoma, osteonecrosis and bone metastasis, among others. In fact, miRNAs regulate multiple pathological mechanisms, including altering either osteogenic or osteoblast differentiation, metastasis, osteosarcoma cell proliferation, and bone loss. Therefore, in this present review, aiming to impulse the research arena of the biological implications of miRNA transcriptome in bone diseases and to explore their potentiality as a theragnostic target, we summarize the recent findings associated with the clinical significance of miRNAs in these ailments.


2021 ◽  
Vol 7 (2) ◽  
pp. 205521732110227
Author(s):  
Friederike Held ◽  
Sudhakar Reddy Kalluri ◽  
Achim Berthele ◽  
Ana-Katharina Klein ◽  
Markus Reindl ◽  
...  

Background Myelin oligodendrocyte glycoprotein (MOG) antibody disease (MOG-AD) is recognized as a distinct nosological entity. IgG antibodies against MOG (MOG-Ab) overlap with neuromyelitis optica spectrum disorders (NMOSD) phenotype in adults. However, an increasing number of clinical phenotypes have been reported to be associated with MOG-Ab. Objective To investigate the seroprevalence of MOG-Ab under consideration of demographics, disease entities and time course in a large cohort of unselected neurological patients. Methods Blood samples of 2.107 consecutive adult neurologic patients admitted to our department between 2016-2017 were tested for MOG-Ab using a cell-based assay. MOG-Ab persistence was analyzed in follow-up samples. External validation was performed in two independent laboratories. Results We found MOG-Ab in 25 of 2.107 (1.2%) patients. High antibody ratios were mostly associated with NMOSD and MOG-AD phenotype (5/25). Low ratios occurred in a wide range of neurological diseases, predominantly in other demyelinating CNS diseases (5/25) and stroke (6/25). MOG-Ab persistence over time was not confined to NMOSD and MOG-AD phenotype. Conclusion The present study demonstrates the occurrence of MOG-Ab in a wide range of neurological diseases. Only high MOG-Ab ratios were associated with a defined clinical phenotype, but low MOG-Ab ratios were not. The diagnostic value of low MOG-Ab is thus highly limited.


2021 ◽  
pp. 088391152199784
Author(s):  
Nipun Jain ◽  
Shashi Singh

Development of an artificial tissue by tissue engineering is witnessed to be one of the long lasting clarified solutions for the damaged tissue function restoration. To accomplish this, a scaffold is designed as a cell carrier in which the extracellular matrix (ECM) performs a prominent task of controlling the inoculated cell’s destiny. ECM composition, topography and mechanical properties lead to different types of interactions between cells and ECM components that trigger an assortment of cellular reactions via diverse sensing mechanisms and downstream signaling pathways. The polysaccharides in the form of proteoglycans and glycoproteins yield better outcomes when included in the designed matrices. Glycosaminoglycan (GAG) chains present on proteoglycans show a wide range of operations such as sequestering of critical effector morphogens which encourage proficient nutrient contribution toward the growing stem cells for their development and endurance. In this review we discuss how the glycosylation aspects are of considerable importance in everyday housekeeping functions of a cell especially when placed in a controlled environment under ideal growth conditions. Hydrogels made from these GAG chains have been used extensively as a resorbable material that mimics the natural ECM functions for an efficient control over cell attachment, permeability, viability, proliferation, and differentiation processes. Also the incorporation of non-mammalian polysaccharides can elicit specific receptor responses which authorize the creation of numerous vigorous frameworks while prolonging the low cost and immunogenicity of the substance.


Author(s):  
Mamou Diallo ◽  
Servé W. M. Kengen ◽  
Ana M. López-Contreras

AbstractThe Clostridium genus harbors compelling organisms for biotechnological production processes; while acetogenic clostridia can fix C1-compounds to produce acetate and ethanol, solventogenic clostridia can utilize a wide range of carbon sources to produce commercially valuable carboxylic acids, alcohols, and ketones by fermentation. Despite their potential, the conversion by these bacteria of carbohydrates or C1 compounds to alcohols is not cost-effective enough to result in economically viable processes. Engineering solventogenic clostridia by impairing sporulation is one of the investigated approaches to improve solvent productivity. Sporulation is a cell differentiation process triggered in bacteria in response to exposure to environmental stressors. The generated spores are metabolically inactive but resistant to harsh conditions (UV, chemicals, heat, oxygen). In Firmicutes, sporulation has been mainly studied in bacilli and pathogenic clostridia, and our knowledge of sporulation in solvent-producing or acetogenic clostridia is limited. Still, sporulation is an integral part of the cellular physiology of clostridia; thus, understanding the regulation of sporulation and its connection to solvent production may give clues to improve the performance of solventogenic clostridia. This review aims to provide an overview of the triggers, characteristics, and regulatory mechanism of sporulation in solventogenic clostridia. Those are further compared to the current knowledge on sporulation in the industrially relevant acetogenic clostridia. Finally, the potential applications of spores for process improvement are discussed.Key Points• The regulatory network governing sporulation initiation varies in solventogenic clostridia.• Media composition and cell density are the main triggers of sporulation.• Spores can be used to improve the fermentation process.


Author(s):  
Mona Hussein ◽  
Rehab Magdy

AbstractMicroRNAs (miRNAs) are a class of short, non-coding, regulatory RNA molecules that function as post transcriptional regulators of gene expression. Altered expression of multiple miRNAs was found to be extensively involved in the pathogenesis of different neurological disorders including Alzheimer’s disease, Parkinson’s disease, stroke, epilepsy, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington’s disease. miRNAs are implicated in the pathogenesis of excitotoxicity, apoptosis, oxidative stress, inflammation, neurogenesis, angiogenesis, and blood–brain barrier protection. Consequently, miRNAs can serve as biomarkers for different neurological disorders. In recent years, advances in the miRNA field led to identification of potentially novel prospects in the development of new therapies for incurable CNS disorders. MiRNA-based therapeutics include miRNA mimics and inhibitors that can decrease or increase the expression of target genes. Better understanding of the mechanisms by which miRNAs are implicated in the pathogenesis of neurological disorders may provide novel targets to researchers for innovative therapeutic strategies.


2021 ◽  
Vol 7 (3) ◽  
pp. 42
Author(s):  
Victoria Mamontova ◽  
Barbara Trifault ◽  
Lea Boten ◽  
Kaspar Burger

Gene expression is an essential process for cellular growth, proliferation, and differentiation. The transcription of protein-coding genes and non-coding loci depends on RNA polymerases. Interestingly, numerous loci encode long non-coding (lnc)RNA transcripts that are transcribed by RNA polymerase II (RNAPII) and fine-tune the RNA metabolism. The nucleolus is a prime example of how different lncRNA species concomitantly regulate gene expression by facilitating the production and processing of ribosomal (r)RNA for ribosome biogenesis. Here, we summarise the current findings on how RNAPII influences nucleolar structure and function. We describe how RNAPII-dependent lncRNA can both promote nucleolar integrity and inhibit ribosomal (r)RNA synthesis by modulating the availability of rRNA synthesis factors in trans. Surprisingly, some lncRNA transcripts can directly originate from nucleolar loci and function in cis. The nucleolar intergenic spacer (IGS), for example, encodes nucleolar transcripts that counteract spurious rRNA synthesis in unperturbed cells. In response to DNA damage, RNAPII-dependent lncRNA originates directly at broken ribosomal (r)DNA loci and is processed into small ncRNA, possibly to modulate DNA repair. Thus, lncRNA-mediated regulation of nucleolar biology occurs by several modes of action and is more direct than anticipated, pointing to an intimate crosstalk of RNA metabolic events.


2014 ◽  
Vol 369 (1652) ◽  
pp. 20130502 ◽  
Author(s):  
Mu Li ◽  
Emily Zeringer ◽  
Timothy Barta ◽  
Jeoffrey Schageman ◽  
Angie Cheng ◽  
...  

Exosomes are tiny vesicles (30–150 nm) constantly secreted by all healthy and abnormal cells, and found in abundance in all body fluids. These vesicles, loaded with unique RNA and protein cargo, have a wide range of biological functions, including cell-to-cell communication and signalling. As such, exosomes hold tremendous potential as biomarkers and could lead to the development of minimally invasive diagnostics and next generation therapies within the next few years. Here, we describe the strategies for isolation of exosomes from human blood serum and urine, characterization of their RNA cargo by sequencing, and present the initial data on exosome labelling and uptake tracing in a cell culture model. The value of exosomes for clinical applications is discussed with an emphasis on their potential for diagnosing and treating neurodegenerative diseases and brain cancer.


2021 ◽  
Author(s):  
Landon Sugar ◽  
Faete Filho ◽  
Tarek Abdel-Salam ◽  
Michael Muglia ◽  
Kurabachew Duba

Abstract Oscillating Wave Surge Converters (OWSCs) are designed to enter survival mode during extreme wave conditions where they forego the opportunity to extract energy to preserve structural integrity. While this is a good tradeoff, it is important that OWSC technology progresses to a point where energy is constantly extracted as long as waves are present. This work addresses the need for an OWSC that can extract wave energy in a wide range of sea conditions while minimizing structural overloading by regulating the fluid-structure interaction. The OWSC being studied here was conceptually designed and patented by researchers at NREL. It consists of a flap face that resembles household blinds, where the flaps can be opened or closed to accommodate the sea conditions. The performance of this variable geometry OWSC in various, shallow wave states was studied in two numerical modeling programs. Of particular interest were the flap’s hydrodynamic coefficients and potential power generation at a specific reference site. This configuration was predicted to mitigate wave forces by allowing some of the wave energy to pass through the device, thus preserving its structural integrity.


1991 ◽  
Vol 4 (2) ◽  
pp. 184-190 ◽  
Author(s):  
K L Ruoff

Streptococci requiring either pyridoxal or L-cysteine for growth were first observed 30 years ago as organisms forming satellite colonies adjacent to colonies of "helper" bacteria. Although they were previously considered nutritional mutants of viridans streptococcal species, the nutritionally variant streptococci (NVS) are currently thought to belong to distinct species of the genus Streptococcus. NVS strains may display pleomorphic cellular morphologies, depending on their growth conditions, and are distinguished from most other streptococci by enzymatic and serological characteristics and the presence of a cell wall chromophore. NVS are found as normal inhabitants of the oral cavity, and in addition to their participation in endocarditis, they have been isolated from a wide range of clinical specimens. Endocarditis caused by NVS is often difficult to eradicate; combinations of penicillin and an aminoglycoside are recommended for treatment. The unique physiological features of the NVS contribute to the difficulties encountered in their recovery from clinical specimens and may play a role in the problems associated with successful treatment of NVS endocarditis.


Zygote ◽  
2019 ◽  
Vol 27 (05) ◽  
pp. 263-271 ◽  
Author(s):  
Maryam Kiani ◽  
Mohammad Salehi ◽  
Asghar Mogheiseh

SummaryInfertility is an important reproductive health problem, and male infertility is especially important in more than half of infertility cases. Due to the importance of genetic factors in this condition, analysis of semen alone is not enough to recognize men with idiopathic infertility. A molecular non-invasive investigation is necessary to gain valuable information. Currently, microRNAs (miRNAs) are being used as non-invasive diagnostic biomarkers. miRNAs, single-stranded non-coding RNA molecules, act as post-transcriptional gene silencing regulators either by inhibition or repression of translation. Changes in the regulation of miRNAs have been investigated in several different types of male infertility, therefore the biological role of miRNA and gene targets has been defined. The purpose of this study was to review recent research on the altered expression of miRNA in semen, sperm, and testicular biopsy samples in infertile males with different types of unexplained infertility. Changes in miRNA regulation were investigated using microarray and the miRNA levels were confirmed by real-time qRT-PCR. This review explains why creating a non-invasive diagnostic method for male infertility is necessary and how changes in miRNA expression can be used as new diagnostic biomarkers in patients with differing spermatogenic and histopathologic injury.


Sign in / Sign up

Export Citation Format

Share Document