scholarly journals Grapevine Responses to Heat Stress and Global Warming

Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1754
Author(s):  
Xenophon Venios ◽  
Elias Korkas ◽  
Aspasia Nisiotou ◽  
Georgios Banilas

The potential effects of the forthcoming climate change include the rising of the average annual temperature and the accumulation of extreme weather events, like frequent and severe heatwaves, a phenomenon known as global warming. Temperature is an important environmental factor affecting almost all aspects of growth and development in plants. The grapevine (Vitis spp.) is quite sensitive to extreme temperatures. Over the current century, temperatures are projected to continue rising with negative impacts on viticulture. These consequences range from short-term effects on wine quality to long-term issues such as the suitability of certain varieties and the sustainability of viticulture in traditional wine regions. Many viticultural zones, particularly in Mediterranean climate regions, may not be suitable for growing winegrapes in the near future unless we develop heat-stress-adapted genotypes or identify and exploit stress-tolerant germplasm. Grapevines, like other plants, have developed strategies to maintain homeostasis and cope with high-temperature stress. These mechanisms include physiological adaptations and activation of signaling pathways and gene regulatory networks governing heat stress response and acquisition of thermotolerance. Here, we review the major impacts of global warming on grape phenology and viticulture and focus on the physiological and molecular responses of the grapevine to heat stress.

2020 ◽  
Author(s):  
Nicholas Rutley ◽  
Laetitia Poidevin ◽  
Tirza Doniger ◽  
Richard Tillet ◽  
Abhishek Rath ◽  
...  

ABSTRACTThe male gametophyte is the most heat-sensitive of all plant tissues. In recent years, long noncoding RNAs (lncRNAs) have emerged as important components of cellular regulatory networks involved in most biological processes, including response to stress. While examining RNAseq datasets of developing and germinating Arabidopsis thaliana pollen exposed to heat stress (HS), we identified 66 novel and 246 recently-annotated intergenic expressed loci (XLOCs) of unknown function, with the majority encoding lncRNAs. Comparison to HS in cauline leaves and other RNAseq experiments, indicated 74% of the 312 XLOCs are pollen-specific, and at least 42% are HS-responsive. Phylogenetic analysis revealed 96% of the genes evolved recently in Brassicaceae. We found that 50 genes are putative targets of microRNAs, and that 30% of the XLOCs contain small open reading frames (ORFs) with homology to protein sequences. Finally, RNAseq of ribosome-protected RNA fragments together with predictions of periodic footprint of the ribosome P-sites indicated that 23 of these ORFs are likely to be translated. Our findings indicate that many of the 312 unknown genes might be functional, and play significant role in pollen biology, including the HS response.


2021 ◽  
Vol 34 (1) ◽  
pp. 61-78
Author(s):  
Nicholas Rutley ◽  
Laetitia Poidevin ◽  
Tirza Doniger ◽  
Richard L. Tillett ◽  
Abhishek Rath ◽  
...  

Abstract Key message Arabidopsis pollen transcriptome analysis revealed new intergenic transcripts of unknown function, many of which are long non-coding RNAs, that may function in pollen-specific processes, including the heat stress response. Abstract The male gametophyte is the most heat sensitive of all plant tissues. In recent years, long noncoding RNAs (lncRNAs) have emerged as important components of cellular regulatory networks involved in most biological processes, including response to stress. While examining RNAseq datasets of developing and germinating Arabidopsis thaliana pollen exposed to heat stress (HS), we identified 66 novel and 246 recently annotated intergenic expressed loci (XLOCs) of unknown function, with the majority encoding lncRNAs. Comparison with HS in cauline leaves and other RNAseq experiments indicated that 74% of the 312 XLOCs are pollen-specific, and at least 42% are HS-responsive. Phylogenetic analysis revealed that 96% of the genes evolved recently in Brassicaceae. We found that 50 genes are putative targets of microRNAs and that 30% of the XLOCs contain small open reading frames (ORFs) with homology to protein sequences. Finally, RNAseq of ribosome-protected RNA fragments together with predictions of periodic footprint of the ribosome P-sites indicated that 23 of these ORFs are likely to be translated. Our findings indicate that many of the 312 unknown genes might be functional and play a significant role in pollen biology, including the HS response.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaojuan Xing ◽  
Yurong Ding ◽  
Jinyu Jin ◽  
Aiping Song ◽  
Sumei Chen ◽  
...  

Heat stress limits the growth and development of chrysanthemum seedlings. Although melatonin (MT) has been linked to the heat stress response in plants, research on the underlying molecular mechanisms is scarce. In this study, the regulatory networks of MT on heat stress in chrysanthemum seedlings were explored. Physiological measurements suggested that MT not only reduced malondialdehyde accumulation, hydrogen peroxide content, and superoxide anion free radical generation rate, but also significantly promoted osmotic regulation substance synthesis (proline and soluble protein), antioxidant accumulation (GSH and AsA), and the antioxidant enzyme activities (SOD, POD, CAT, and APX) in chrysanthemum leaves under heat stress. Furthermore, MT increased the fresh weight, dry weight, chlorophyll content, photosynthesis rate, and gas exchange indexes. Further, RNA-seq results revealed 33,497 and 36,740 differentially expressed genes in the S/Con and SMT/ConMT comparisons, respectively. The differences in the comparisons revealed that MT regulated heat shock transcription factors (HSFs) and heat shock proteins (HSPs), and the genes involved in Ca2+ signal transduction (CNGCs and CAM/CMLs), starch and sucrose metabolism (EDGL, BGLU, SuS, and SPS), hormone (PP2Cs, AUX/IAAs, EBFs, and MYC2), chlorophyll metabolism (HEMA and PORA), flavonoid biosynthesis (CHS, DFR, and FNS), and carotenoid biosynthesis (DXPS, GGDP, and PSY). MT effectively improved chrysanthemum seedling heat-resistance. Our study, thus, provides novel evidence of a gene network regulated by MT under heat stress.


Genes ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 174 ◽  
Author(s):  
Peipei Su ◽  
Cai Jiang ◽  
Hao Qin ◽  
Rui Hu ◽  
Jialu Feng ◽  
...  

Wheat, a major worldwide staple food crop, is relatively sensitive to a changing environment, including high temperature. The comprehensive mechanism of heat stress response at the molecular level and exploitation of candidate tolerant genes are far from enough. Using transcriptome data, we analyzed the gene expression profiles of wheat under heat stress. A total of 1705 and 17 commonly differential expressed genes (DEGs) were identified in wheat grain and flag leaf, respectively, through transcriptome analysis. Gene Ontology (GO) and pathway enrichment were also applied to illustrate the functions and metabolic pathways of DEGs involved in thermotolerance of wheat grain and flag leaf. Furthermore, our data suggest that there may be a more complex molecular mechanism or tighter regulatory network in flag leaf than in grain under heat stress over time, as less commonly DEGs, more discrete expression profiles of genes (principle component analysis) and less similar pathway response were observed in flag leaf. In addition, we found that transcriptional regulation of zeatin, brassinosteroid and flavonoid biosynthesis pathways may play an important role in wheat’s heat tolerance. The expression changes of some genes were validated using quantitative real-time polymerase chain reaction and three potential genes involved in the flavonoid biosynthesis process were identified.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhi-Fang Zuo ◽  
Wenbo He ◽  
Jing Li ◽  
Beixin Mo ◽  
Lin Liu

Small RNAs (sRNAs) are a class of non-coding RNAs that consist of 21–24 nucleotides. They have been extensively investigated as critical regulators in a variety of biological processes in plants. sRNAs include two major classes: microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis and functional pathways. Due to global warming, high-temperature stress has become one of the primary causes for crop loss worldwide. Recent studies have shown that sRNAs are involved in heat stress responses in plants and play essential roles in high-temperature acclimation. Genome-wide studies for heat-responsive sRNAs have been conducted in many plant species using high-throughput sequencing. The roles for these sRNAs in heat stress response were also unraveled subsequently in model plants and crops. Exploring how sRNAs regulate gene expression and their regulatory mechanisms will broaden our understanding of sRNAs in thermal stress responses of plant. Here, we highlight the roles of currently known miRNAs and siRNAs in heat stress responses and acclimation of plants. We also discuss the regulatory mechanisms of sRNAs and their targets that are responsive to heat stress, which will provide powerful molecular biological resources for engineering crops with improved thermotolerance.


2017 ◽  
Author(s):  
Xi Lan ◽  
John C. F. Hsieh ◽  
Carl J. Schmidt ◽  
Qing Zhu ◽  
Susan J. Lamont

2016 ◽  
Vol 22 (18) ◽  
pp. 2619-2639 ◽  
Author(s):  
Biljana Miova ◽  
Maja Dimitrovska ◽  
Suzana Dinevska-Kjovkarovska ◽  
Juan V. Esplugues ◽  
Nadezda Apostolova

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 687
Author(s):  
Chan Seop Ko ◽  
Jin-Baek Kim ◽  
Min Jeong Hong ◽  
Yong Weon Seo

High-temperature stress during the grain filling stage has a deleterious effect on grain yield and end-use quality. Plants undergo various transcriptional events of protein complexity as defensive responses to various stressors. The “Keumgang” wheat cultivar was subjected to high-temperature stress for 6 and 10 days beginning 9 days after anthesis, then two-dimensional gel electrophoresis (2DE) and peptide analyses were performed. Spots showing decreased contents in stressed plants were shown to have strong similarities with a high-molecular glutenin gene, TraesCS1D02G317301 (TaHMW1D). QRT-PCR results confirmed that TaHMW1D was expressed in its full form and in the form of four different transcript variants. These events always occurred between repetitive regions at specific deletion sites (5′-CAA (Glutamine) GG/TG (Glycine) or (Valine)-3′, 5′-GGG (Glycine) CAA (Glutamine) -3′) in an exonic region. Heat stress led to a significant increase in the expression of the transcript variants. This was most evident in the distal parts of the spike. Considering the importance of high-molecular weight glutenin subunits of seed storage proteins, stressed plants might choose shorter polypeptides while retaining glutenin function, thus maintaining the expression of glutenin motifs and conserved sites.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4571
Author(s):  
Antonio Morata ◽  
Iris Loira ◽  
Carmen González ◽  
Carlos Escott

Off-flavors produced by undesirable microbial spoilage are a major concern in wineries, as they affect wine quality. This situation is worse in warm areas affected by global warming because of the resulting higher pHs in wines. Natural biotechnologies can aid in effectively controlling these processes, while reducing the use of chemical preservatives such as SO2. Bioacidification reduces the development of spoilage yeasts and bacteria, but also increases the amount of molecular SO2, which allows for lower total levels. The use of non-Saccharomyces yeasts, such as Lachancea thermotolerans, results in effective acidification through the production of lactic acid from sugars. Furthermore, high lactic acid contents (>4 g/L) inhibit lactic acid bacteria and have some effect on Brettanomyces. Additionally, the use of yeasts with hydroxycinnamate decarboxylase (HCDC) activity can be useful to promote the fermentative formation of stable vinylphenolic pyranoanthocyanins, reducing the amount of ethylphenol precursors. This biotechnology increases the amount of stable pigments and simultaneously prevents the formation of high contents of ethylphenols, even when the wine is contaminated by Brettanomyces.


Sign in / Sign up

Export Citation Format

Share Document