scholarly journals Diversity Patterns of Bermuda Grass along Latitudinal Gradients at Different Temperatures in Southeastern China

Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1778
Author(s):  
Jing-Xue Zhang ◽  
Ming-Hui Chen ◽  
Lu Gan ◽  
Chuan-Jie Zhang ◽  
Yu Shen ◽  
...  

Cynodon dactylon (L.) Pers. (common Bermuda grass) has a limited capacity to grow at low temperatures, which limits its geographical range. Exploring its evolutionary relationship across different environmental gradients is necessary to understand the effects of temperature change on the genetics of common Bermuda grass. In this study, high-throughput transcriptome sequencing was performed on 137 samples of C. dactylon from 16 latitudinal gradients to explore the differential molecular markers and analyze genetic diversity and structure along latitudinal gradients at different temperatures. We primarily sampled more high-quality single nucleotide polymorphisms (SNPs) from populations at lower and middle latitudes. Greater intraspecific genetic variation at each level of temperature treatment could be due to factors such as wind pollination and asexual breeding. Populations of C. dactylon at high latitudes differed from populations at middle and low latitudes, which was supported by a principal component analysis (PCA) and genetic structure analysis, performed at different temperatures. We observed more genetic variation for low-latitude populations at 5 °C, according to an analysis of three phylogenetic trees at different temperature levels, suggesting that low temperatures affected samples with low cold resistance. Based on the results of phylogenetic analysis, we found that samples from high latitudes evolved earlier than most samples at low latitudes. The results provide a comprehensive understanding of the evolutionary phenomenon of landscape genetics, laying the groundwork for future structural and comparative genomic studies of C. dactylon.

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 256
Author(s):  
Florentina Golgovici ◽  
Mariana Prodana ◽  
Florentina Gina Ionascu ◽  
Ioana Demetrescu

The purpose of our study is to compare the behavior of two reprocessed dental alloys (NiCr and CoCr) at different temperatures considering the idea that food and drinks in the oral cavity create various compositions at different pH levels; the novelty is the investigation of temperature effect on corrosion parameters and ion release of dental alloys. Electrochemical stability was studied together with morphology, elemental composition and ions release determination. The results obtained are in good concordance: electrochemistry studies reveal that the corrosion rate is increasing by increasing the temperature. From SEM coupled with EDS, the oxide film formed on the surface of the alloys is stable at low temperatures and a trend to break after 310K. ICP-MS results evidence that in accordance with increasing temperature, the quantities of ions released from the alloys immersed in artificial saliva also increase, though they still remain small, less than 20 ppm.


1976 ◽  
Vol 13 (6) ◽  
pp. 749-773 ◽  
Author(s):  
J. L. Roy ◽  
P. L. Lapointe

Thermal, chemical, and alternating field (and two-stage) cleaning treatments of Huronian sediments and Nipissing diabase (which intrudes the sediments) from the Cobalt area yield five directions of magnetizations (A–E) of high stability; A, B, C, and E are found in the sediments, and C, D, and E in the diabase. It is suggested that magnetization B (337°, +52°; α95 = 8°; pole 158 °E, 67 °N) was acquired shortly after deposition of the Firstbrook beds [Formula: see text]; magnetization C (259°, +82°; α95 = 5°; pole 258 °E, 42 °N), found in both the diabase and sediments in contact with the diabase, was acquired during cooling following emplacement of the diabase [Formula: see text]; and magnetizations D and E, yielding poles at 264 °E, 15 °S and 000°, 09 °N respectively, were produced during the Hudsonian orogeny (−1850 to −1700 Ma). This interpretation resolves the previous inconsistencies between poles and age determinations. Good agreement between results from the Nipissing diabase and other igneous bodies indicate that widespread igneous events occurred in the time range approximately −2200 to −2100 Ma, immediately following deposition of Huronian sediments. This is referred to as 'Post-Huronian Igneous Events'. A proposed apparent polar path relative to Laurentia shows two distinct motions; for the 2300–1850 Ma interval, a latitudinal change (roughly along longitude 250° E) from high [Formula: see text] to low [Formula: see text] latitudes and, for the 1850–1500 Ma interval, a displacement along the present-day equator with first an eastward motion to about 000° longitude followed by a westward motion to 240° E longitude; the apex of the eastward excursion is given a date of [Formula: see text]. It is possible that this reflects a rotation of Laurentia about a vertical axis at the time of and following the Hudsonian orogeny. Subsequent uplift and cooling would explain the many overprinted stable magnetizations yielding poles distributed along the equator (track 4). Latitude maps indicate that Laurentia was in high latitudes from 2200–2000 Ma and in intermediate to low latitudes from 1900–1500 Ma.


2005 ◽  
Vol 18 (13) ◽  
pp. 2222-2246 ◽  
Author(s):  
Robert J. Oglesby ◽  
Monica Y. Stephens ◽  
Barry Saltzman

Abstract A coupled mixed layer–atmospheric general circulation model has been used to evaluate the impact of ocean thermocline temperatures (and by proxy those of the deep ocean) on the surface climate of the earth. Particular attention has been devoted to temperature regimes both warmer and cooler than at present. The mixed layer ocean model (MLOM) simulates vertical dynamics and thermodynamics in the upper ocean, including wind mixing and buoyancy effects, and has been coupled to the NCAR Community Climate Model (CCM3). Simulations were made with globally uniform thermocline warmings of +2°, +5°, and +10°C, as well as a globally uniform cooling of −5°C. A simulation was made with latitudinally varying changes in thermocline temperature such that the warming at mid- and high latitudes is much larger than at low latitudes. In all simulations, the response of surface temperature over both land and ocean was larger than that expected just as a result of the imposed thermocline temperature change, largely because of water vapor feedbacks. In this respect, the simulations were similar to those in which only changes in atmospheric carbon dioxide were imposed. In fact, when carbon dioxide was explicitly changed along with thermocline temperatures, the results were not much different than if only the thermocline temperatures were altered. Land versus ocean differences are explained largely by latent heat flux differences: the ocean is an infinite evaporative source, while land can be quite dry. The latitudinally varying case has a much larger response at mid- to high latitudes than at low latitudes; the high latitudes actually appear to effectively warm the low latitudes. Simulations exploring scenarios of glacial inception suggest that the deep ocean alone is not likely to be a key trigger but must operate in conjunction with other forcings, such as reduced carbon dioxide. Moist upland regions at mid- and high latitudes, and land regions adjacent to perennial sea ice, are the preferred locations for glacial inception in these runs. Finally, the model combination equilibrates very rapidly, meaning that a large number of simulations can be made for a fairly modest computational cost. A drawback to this is greatly reduced sensitivity to parameters such as atmospheric carbon dioxide, which requires a full response of the ocean. Thus, this approach can be considered intermediate between fixing, or prescribing, sea surface temperatures and a fully coupled modeling approach.


1996 ◽  
Vol 14 (4) ◽  
pp. 464-467 ◽  
Author(s):  
R. P. Kane

Abstract. The 12-month running means of the surface-to-500 mb precipitable water obtained from analysis of radiosonde data at seven selected locations showed three types of variability viz: (1) quasi-biennial oscillations; these were different in nature at different latitudes and also different from the QBO of the stratospheric tropical zonal winds; (2) decadal effects; these were prominent at middle and high latitudes and (3) linear trends; these were prominent at low latitudes, up trends in the Northern Hemisphere and downtrends in the Southern Hemisphere.


Science ◽  
1988 ◽  
Vol 242 (4884) ◽  
pp. 1403-1406 ◽  
Author(s):  
P. V. Rich ◽  
T. H. Rich ◽  
B. E. Wagstaff ◽  
J. M. Mason ◽  
C. B. Douthitt ◽  
...  

1973 ◽  
Vol 133 (4) ◽  
pp. 735-738 ◽  
Author(s):  
Ian A. Johnston ◽  
Neil Frearson ◽  
Geoffrey Goldspink

1. Myofibrillar adenosine triphosphatase (ATPase) activities were measured for white myotomal muscle of 19 species of fish. 2. The activity was measured at different temperatures and after periods of preincubation at 37°C. 3. The inactivation half-life at 37°C depended on environmental temperature, increasing as the temperature increased. 4. Cold-water fish had higher myofibrillar adenosine triphosphatase activity at low temperatures than had warm-water fish. 5. The significance of these results is discussed.


2019 ◽  
Author(s):  
Vikram E. Chhatre ◽  
Karl C. Fetter ◽  
Andrew V. Gougherty ◽  
Matthew C. Fitzpatrick ◽  
Raju Y. Soolanayakanahally ◽  
...  

AbstractWithin a species’ range, intraspecific diversity in the form of adaptive standing genetic variation (SGV) may be non-randomly clustered into different geographic regions, reflecting the combined effects of historical range movements and spatially-varying natural selection. As a consequence of a patchy distribution of adaptive SGV, populations in different parts of the range are likely to vary in their capacity to respond to changing selection pressures, especially long-lived sessile organisms like forest trees. However, the spatial distribution of adaptive SGV across the landscape is rarely considered when predicting species responses to environmental change. Here, we use a landscape genomics approach to estimate the distribution of adaptive SGV along spatial gradients reflecting the expansion history and contemporary climatic niche of balsam poplar, Populus balsamifera (Salicaceae), a widely distributed forest tree with a transcontinental distribution in North America. By scanning the genome for signatures of spatially varying local adaptation, we estimated how adaptive SGV has been shaped by geographic distance from the rear range edge (expansion history) versus proximity to the current center of the climatic niche (environmental selection). We found that adaptive SGV was strongly structured by the current climatic niche, with surprisingly little importance attributable to historical effects such as migration out of southern refugia. As expected, the effect of the climatic niche on SGV was strong for genes whose expression is responsive to abiotic stress (drought), although genes upregulated under biotic (wounding) stress also contained SGV that followed climatic and latitudinal gradients. The latter result could reflect parallel selection pressures, or co-regulation of functional pathways involved in both abiotic and biotic stress responses. Our study in balsam poplar suggests that clustering of locally adaptive SGV within ranges primarily reflects spatial proximity within the contemporary climatic niche – an important consideration for the design of effective strategies for biodiversity conservation and avoidance of maladaptation under climate change.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247586
Author(s):  
Christine E. Edwards ◽  
Brooke C. Tessier ◽  
Joel F. Swift ◽  
Burgund Bassüner ◽  
Alexander G. Linan ◽  
...  

Understanding genetic diversity and structure in a rare species is critical for prioritizing both in situ and ex situ conservation efforts. One such rare species is Physaria filiformis (Brassicaceae), a threatened, winter annual plant species. The species has a naturally fragmented distribution, occupying three different soil types spread across four disjunct geographical locations in Missouri and Arkansas. The goals of this study were to understand: (1) whether factors associated with fragmentation and small population size (i.e., inbreeding, genetic drift or genetic bottlenecks) have reduced levels of genetic diversity, (2) how genetic variation is structured and which factors have influenced genetic structure, and (3) how much extant genetic variation of P. filiformis is currently publicly protected and the implications for the development of conservation strategies to protect its genetic diversity. Using 16 microsatellite markers, we genotyped individuals from 20 populations of P. filiformis from across its geographical range and one population of Physaria gracilis for comparison and analyzed genetic diversity and structure. Populations of P. filiformis showed comparable levels of genetic diversity to its congener, except a single population in northwest Arkansas showed evidence of a genetic bottleneck and two populations in the Ouachita Mountains of Arkansas showed lower genetic variation, consistent with genetic drift. Populations showed isolation by distance, indicating that migration is geographically limited, and analyses of genetic structure grouped individuals into seven geographically structured genetic clusters, with geographic location/spatial separation showing a strong influence on genetic structure. At least one population is protected for all genetic clusters except one in north-central Arkansas, which should therefore be prioritized for protection. Populations in the Ouachita Mountains were genetically divergent from the rest of P. filiformis; future morphological analyses are needed to identify whether it merits recognition as a new, extremely rare species.


2019 ◽  
pp. 62-64
Author(s):  
S. R. Gasanov ◽  
S. A. Mammadova

The study of the dynamics of plant growth and yield of vegetable crops (carrot variety Absheron winter (Daucus carota subsp. sativus (Hoffm.) Schьbl.) and radish variety Virovsky white (Raphanus sativus var.radicula Pers.)) was conducted in the field conditions after presowing exposure to different temperatures: I option – sowing of seeds exposed to low temperatures (for 15 days the swollen for 24 hours seeds were kept at a temperature of 0±1°С); Option II - sowing of seeds exposed to variable temperatures (for 5 days, the swollen for 24 hours seeds were exposed to variable temperatures of + 20°C (8 hours) and 0±1°C (16 hours) and then 10 days at a temperature of 0±1°C; K1 – sowing dry seeds; K2 – sowing soaked seeds. The impact on the seeds of low and variable temperatures caused an increase in growth processes, both in radish and carrot. Both studied crops showed a tendency to increase the yield to a greater extent when exposed to swollen seeds with variable temperatures. Thus, the average weight of radish crops exceeded the control variant by 47.1% and carrots by 27.6%. The yield of root crops per m2increased by 36.4% for radish and 30.0% for carrot. To increase the productivity of vegetable crops, we recommend using the studied methods of pre-sowing seed treatment in practice.


Sign in / Sign up

Export Citation Format

Share Document