scholarly journals The New Generation from Biomembrane with Green Technologies for Wastewater Treatment

Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1174 ◽  
Author(s):  
Ahmed Mohamed El-hadi ◽  
Hatem Alamri

A biopolymer of polylactic acid (PLLA)/polypropylene carbonate (PPC)/poly (3-hydroxybutrate) (PHB)/triethyl citrate (TEC) blends was prepared by the solution-casting method at different proportions. The thermal characteristics were studied by differential scanning calorimetry (DSC) and thermogravimetry (TG). PHB and TEC were added to improve the interfacial adhesion, crystallization behavior, and mechanical properties of the immiscible blend from PLLA and PPC (20%). The addition of more than 20% of PPC as an amorphous part hindered the crystallization of PLLA. PPC, PHB, and TEC also interacted with the PLLA matrix, which reduced the glass transition temperature (Tg), the cold crystallization temperature (Tcc), and the melting point (Tm) to about 53, 57 and 15 °C, respectively. The Tg shifted from 60 to 7 °C; therefore, the elongation at break improved from 6% (pure PLLA) to 285% (PLLA blends). In this article, biomembranes of PLLA with additives were developed and made by an electrospinning process. The new generation from biopolymer membranes can be used to absorb suspended pollutants in the water, which helps in the purification of drinking water in the household.


Author(s):  
Ahmed M. El-hadi ◽  
Hatem R. Alamri

Water pollution in developing countries affects the public health of humans and the environment. It is therefore essential to develop environmentally friendly biopolymer, sustainable and low-cost membranes. Biopolymer nanofiber membranes are made by an electrospinning process of polylactic acid (PLLA) with additives. The main objective of this study is to manufacture biodegradable nanofiber membranes for use in filtering the suspended elements in wastewater at the level of drinkable or in agricultural fields. It is known that PLLA is brittle and therefore it is difficult to apply in industry. To solve this problem and enhance its flexibility. Flexible biopolymer polypropylene carbonate (PPC) and plasticizer are the addition in PLLA to reduce its glass transition and enhance its crystallization by adding Poly(3-hydroxy butyrate) PHB. In this work, 20 wt% of PPC was added to PLLA matrix to improve its elasticity and elongation at break. DSC shows that the addition of PPC, PHB, and TEC did affect the thermal properties like Tg, Tcc and Tm of the PLLA blends. The position of the Tg, Tcc, and Tm is shifting, the consequence the chain mobility is increased, therefore the crystallinity is enhanced. Electrospun fibers of PLLA/PPC/PHB/TEC were successfully manufactured. Tensile tester showed the increase in elongation at break of PLLA blend films, the elongation at break increases by 285 times. It observed with the increasing the elongation at break, a decrease in stress strength. After improving the mechanical properties with the higher elongation at break values, this blend is optimal for filtrations process.



2021 ◽  
Vol 36 (1) ◽  
pp. 60-68
Author(s):  
A. Chelli ◽  
L. Hemmouche ◽  
H. Ait-Sadi ◽  
D. Trache ◽  
M. Benziane ◽  
...  

Abstract The use of nano composites in elastomer blends gives outstanding mechanical properties compared to the use of micro and macro composites, even with very low nano filler content. In this paper, we studied the influence of varying proportions of natural rubber (NR) and acrylonitrile butadiene rubber (NBR) reinforced with nano silica on the mechanical and thermal characteristics of the rubber. Mechanical characterizations were carried out with hardness, tensile strength, elongation at break, tear strength, modulus and toughness. For thermal analyses, we used differential scanning calorimetry ( DSC) and Thermogravimetric Analysis (TGA). In most cases, the increase in the percentage of NBR with the presence of nano silica enhances hardness, modulus and toughness, however, it reduces tensile strength, tear strength and elongation at break. It was found that nano silica has a catalytic effect on the mixture, and NBR has a catalytic effect on the decomposition of NR.



Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2232
Author(s):  
Yulia Tertyshnaya ◽  
Svetlana Karpova ◽  
Maksim Moskovskiy ◽  
Aleksey Dorokhov

Non-woven polylactide-natural rubber fiber materials with a rubber content of 5, 10 and 15 wt.% were obtained by electrospinning. The thermal, dynamic, and mechanical properties of the fibers were determined. It was shown that the average fiber diameter increased with adding of the NR content, while the linear and surface densities changed slightly. Using the differential scanning calorimetry, the thermal characteristics were obtained. It was found that the glass transition temperature of polylactide increased by 2–5 °C, and the melting temperature increased by 2–4 °C in the presence of natural rubber in the samples. By the method of electronic paramagnetic resonance at T = 50 and 70 °C it was determined that the mobility of the amorphous phase in PLA/NR fibers increased with the addition of NR. The adding of NR at a content of 15 wt.% increased the value of elongation at break by 3.5 times compared to pure PLA.



Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1958
Author(s):  
Jolanta Tomaszewska-Gras ◽  
Mahbuba Islam ◽  
Liliana Grzeca ◽  
Anna Kaczmarek ◽  
Emilia Fornal

The aim of this study was to describe the thermal properties of selected cultivars of flaxseed oil by the use of the differential scanning calorimetry (DSC) technique. The crystallization and melting profiles were analyzed depending on different scanning rates (1, 2, 5 °C/min) as well as oxidative induction time (OIT) isothermally at 120 °C and 140 °C, and oxidation onset temperatures (Ton) at 2 and 5 °C/min were measured. The crystallization was manifested as a single peak, differing for a cooling rate of 1 and 2 °C/min. The melting curves were more complex with differences among the cultivars for a heating rate of 1 and 2 °C/min, while for 5 °C/min, the profiles did not differ, which could be utilized in analytics for profiling in order to assess the authenticity of the flaxseed oil. Moreover, it was observed that flaxseed oil was highly susceptible to thermal oxidation, and its stability decreased with increasing temperature and decreasing heating rate. Significant negative linear correlations were found between unsaturated fatty acid content (C18:2, C18:3 n-3) and DSC parameters (OIT, Ton). Principal component analysis (PCA) also established a strong correlation between total oxidation value (TOTOX), peroxide value (PV) and all DSC parameters of thermo-oxidative stability.



Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1426
Author(s):  
Tomáš Remiš ◽  
Petr Bělský ◽  
Tomáš Kovářík ◽  
Jaroslav Kadlec ◽  
Mina Ghafouri Azar ◽  
...  

In this work, advanced polymer nanocomposites comprising of polyvinyl alcohol (PVA) and nanodiamonds (NDs) were developed using a single-step solution-casting method. The properties of the prepared PVA/NDs nanocomposites were investigated using Raman spectroscopy, small- and wide-angle X-ray scattering (SAXS/WAXS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). It was revealed that the tensile strength improved dramatically with increasing ND content in the PVA matrix, suggesting a strong interaction between the NDs and the PVA. SEM, TEM, and SAXS showed that NDs were present in the form of agglomerates with an average size of ~60 nm with primary particles of diameter ~5 nm. These results showed that NDs could act as a good nanofiller for PVA in terms of improving its stability and mechanical properties.



Author(s):  
Georgina Alejandra Venegas-Cervera ◽  
Andrés Iván Oliva ◽  
Alejandro Avila-Ortega ◽  
José Manuel Cervantes-Uc ◽  
Leydi Maribel Carrillo-Cocom ◽  
...  

AbstractElectrospun polymers are an example of multi-functional biomaterials that improve the material-cellular interaction and aimed at enhancing wound healing. The main objective of this work is to fabricate electrospun polyurethane membranes using arginine as chain extender (PUUR) in order to test the fibroblasts affinity and adhesion on the material and the polymer toxicity. Polyurethane membranes were prepared in two steps: (i) the polyurethane synthesis, and ii) the electrospinning process. The membranes were characterized by scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy, gel permeation chromatography, and differential scanning calorimetry techniques. The evaluation of PUUR as a scaffolding biomaterial for growing and developing of cells on the material was realized by LIVE/DEAD staining. The results show that the fluorescent surface area of human fibroblasts (hFB), was greater in control dense membranes made from Tecoflex than in electrospun and dense PUUR. From SEM analysis, the electrospun membranes show relatively uniform attachment of cells with a well-spread shape, while Tecoflex dense membranes show a non-proliferating round shape, which is attributed to the fiber’s structure in electrospun membranes. The cell morphology and the cell attachment assay results reveal the well spreading of hFB cells on the surface of electrospun PUUR membranes which indicates a good response related to cell adhesion.



2021 ◽  
Vol 36 (2) ◽  
pp. 137-143
Author(s):  
S. A. Awad

Abstract This paper aims to describe the thermal, mechanical, and surface properties of a PVA/HPP blend whereby the film was prepared using a solution casting method. The improvements in thermal and mechanical properties of HPP-based PVA composites were investigated. The characterization of pure PVA and PVA composite films included tensile tests, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results of TGA and DSC indicated that the addition of HPP increased the thermal decomposition temperature of the composites. Mechanical properties are significantly improved in PVA/HPP composites. The thermal stability of the PVA composite increased with the increase of HPP filler content. The tensile strength increased from 15.74 ± 0.72 MPa to 27.54 ± 0.45 MPa and the Young’s modulus increased from 282.51 ± 20.56 MPa to 988.69 ± 42.64 MPa for the 12 wt% HPP doped sample. Dynamic mechanical analysis (DMA) revealed that at elevated temperatures, enhanced mechanical properties because of the presence of HPP was even more noticeable. Morphological observations displayed no signs of agglomeration of HPP fillers even in composites with high HPP loading.



2005 ◽  
Vol 13 (8) ◽  
pp. 839-846 ◽  
Author(s):  
Li-Ping Wang ◽  
Yun-Pu Wang ◽  
Fa-Ai Zhang

A new type of nano-composite film was prepared from polyvinyl alcohol, Ni2+-montmorillonite (Ni2+-MMT), defoamer, a levelling agent and a plasticizer. Its thermal characteristics were studied by Differential Scanning Calorimetry (DSC). The intermolecular interactions were measured by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS), and the tensile strength (TS) and elongation at break (%E) were measured. The microstructures were studied by X-ray diffraction (XRD) and atomic force microscopy (AFM). FT-IR and XPS spectra indicated that cross-linking has taken place between PVA and Ni2+-MMT. XRD and AFM indicate that the PVA molecules had inserted themselves into the silicate layers of MMT, exfoliating them and dispersing them randomly into the PVA matrix. Compared to pure PVA film, the TS of the films was increased and %E decreased when the Ni2+-Montmorillonite was added and the dissolution temperature of the film was also reduced.



Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1666 ◽  
Author(s):  
Issac Torres ◽  
Mauro Ruiz ◽  
Hung Phan ◽  
Noemi Dominguez ◽  
Jacobo Garcia ◽  
...  

Organic semiconductor materials composed of π–π stacking aromatic compounds have been under intense investigation for their potential uses in flexible electronics and other advanced technologies. Herein we report a new family of seven π–π stacking compounds of silver(I) bis-N-(4-pyridyl) benzamide with varying counterions, namely [Ag(NPBA)2]X, where NPBA is N-(4-pyridyl) benzamine, X = NO3− (1), ClO4− (2), CF3SO3− (3), PF6− (4), BF4− (5), CH3PhSO3− (6), and PhSO3− (7), which form extended π−π stacking networks in one-dimensional (1D), 2D and 3D directions in the crystalline solid-state via the phenyl moiety, with average inter-ring distances of 3.823 Å. Interestingly, the counterions that contain π–π stacking-capable groups, such as in 6 and 7, can induce the formation of mesomorphic phases at 130 °C in dimethylformamide (DMF), and can generate highly branched networks at the mesoscale. Atomic force microscopy studies showed that 2D interconnected fibers form right after nucleation, and they extend from ~30 nm in diameter grow to reach the micron scale, which suggests that it may be possible to stop the process in order to obtain nanofibers. Differential scanning calorimetry studies showed no remarkable thermal behavior in the complexes in the solid state, which suggests that the mesomorphic phases originate from the mechanisms that occur in the DMF solution at high temperatures. An all-electron level simulation of the band gaps using NRLMOL (Naval Research Laboratory Molecular Research Library) on the crystals gave 3.25 eV for (1), 3.68 eV for (2), 1.48 eV for (3), 5.08 eV for (4), 1.53 eV for (5), and 3.55 eV for (6). Mesomorphic behavior in materials containing π–π stacking aromatic interactions that also exhibit low-band gap properties may pave the way to a new generation of highly branched organic semiconductors.



Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6344
Author(s):  
Philipp S. Borchers ◽  
Patrick Gerlach ◽  
Yihan Liu ◽  
Martin D. Hager ◽  
Andrea Balducci ◽  
...  

In this work, two new redox-active ionic liquids, one based on 2,2,6,6-tetramethylpiperidine-N-oxide and the other based on 4,4′-bipyridine, are synthesized and characterized. A ferrocene-based redox-active ionic liquid is used for referencing the results. All ionic liquids are formed via salt-metathesis from halogenate to bis(trifluoromethylsulfonyl)imide. Their fundamental thermal characteristics are assessed with differential scanning calorimetry. While the imidazolium ionic liquids show no melting point, the phase transition is well observable for the viologen-based ionic liquid. The properties of the neat redox-active ionic liquids and of binary mixtures containing these ionic liquids (0.1 m) and 1-butyl-1-methyl pyrrolidinium-bis(trifluoromethylsulfonyl)imide have been investigated. Finally, the use of these binary mixtures in combination with activated carbon-based electrodes has been considered in view of the use of these redox-active electrolytes in supercapacitors.



Sign in / Sign up

Export Citation Format

Share Document